Шинтан Яу - Теория струн и скрытые измерения Вселенной Страница 9

Тут можно читать бесплатно Шинтан Яу - Теория струн и скрытые измерения Вселенной. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Шинтан Яу - Теория струн и скрытые измерения Вселенной читать онлайн бесплатно

Шинтан Яу - Теория струн и скрытые измерения Вселенной - читать книгу онлайн бесплатно, автор Шинтан Яу

Рассмотрим, например, климат Земли. Хотя это и не очевидно, геометрия оказывает существенное влияние на климат — в этом случае основную роль играет форма нашей планеты. Если бы мы жили не на поверхности сферы, а на поверхности тора или бублика, то наша жизнь — так же, как и климат нашей планеты, — была бы совершенно другой.

На сфере все ветры не могут дуть одновременно в одном и том же направлении (например, восточном), так же как не могут иметь одно и то же направление одновременно все океанические течения (как было показано в предыдущей главе). Неизбежно будут существовать точки, такие как Северный и Южный полюсы, где ветры или течения больше не будут иметь восточного направления, в таких точках исчезает само понятие «восточное направление». Иная ситуация складывается на тороидальной поверхности, где подобных препятствий нет, и ветры или течения могут перемещаться в одном и том же направлении по всей поверхности без каких-либо помех. Топологические различия, несомненно, влияют на глобальные процессы циркуляции, однако, если вас интересуют более конкретные климатические последствия, такие как различие сезонных изменений на поверхности сферы и тора, — вам лучше спросить об этом метеоролога.

Область исследований геометрии на самом деле еще шире. Использование геометрии совместно с общей теорией относительности Эйнштейна показало, что масса и энергия Вселенной являются положительными величинами, и, следовательно, четырехмерное пространство-время, в котором мы живем, стабильно. Помимо этого, согласно геометрическим принципам, где-то во Вселенной должны существовать странные места, называемые сингулярностями, расположенные, к примеру, в центрах черных дыр, где плотность вещества стремится к бесконечности и известные нам законы физики перестают работать. В качестве еще одного примера — на этот раз из теории струн — можно привести геометрию загадочных шестимерных пространств, называемых многообразиями Калаби-Яу, в которых предположительно и происходит большая часть важнейших физических процессов. Эта геометрия способна объяснить разнообразие существующих элементарных частиц, предсказывая не только их массу, но и характер сил взаимодействия между ними. Помимо прочего, исследование подобных многомерных пространств позволило выявить возможные причины слабости гравитации по сравнению с другими фундаментальными взаимодействиями, а также дало ключи к открытию механизмов, лежащих в основе инфляционного расширения ранней Вселенной и существования темной энергии, управляющей расширением космического пространства.

Как видите, мои слова о том, что геометрия наряду с физикой и космологией является бесценным орудием для раскрытия секретов Вселенной, не были пустым хвастовством. Более того, если принять во внимание последние успехи математики, которые будут описаны в этой книге, прогресс в области наблюдательной космологии и возникновение теории струн, пытающейся осуществить никому не удавшийся до сих пор великий синтез, складывается впечатление, что эти три направления исследований должны сойтись в одной точке. Следовательно, человеческое познание сейчас стоит на пороге выдающихся открытий и готово сделать огромный шаг вперед, причем геометрия во всех смыслах командует парадом.

Следует помнить, что, куда бы мы ни двигались в области геометрии и что бы мы ни делали, мы не начинаем наш путь с чистого листа. Мы всегда ссылаемся на то, что было установлено до нас: гипотезы, доказательства, теоремы или аксиомы, используя фундамент, который в большинстве случаев был возведен за тысячи лет до этого. В этом смысле геометрию, как и другие науки, можно считать тщательно продуманным строительным проектом. В первую очередь закладывается фундамент, и если он заложен удачно, так сказать, положен на твердую поверхность, то устоит и само здание и надстройки на его крыше, если, конечно, они также сделаны с соблюдением разумных принципов.

В этом, по сути, и состоит красота и сила моего призвания. Если речь идет о математике, от нее всегда ожидают абсолютно точных утверждений. Математическая теорема — это точное утверждение, остающееся непреложной истиной вне зависимости от пространства, времени, мнения людей и авторитетов. Эта особенность математики резко отличает ее от эмпирических наук, в которых основным методом исследования является постановка экспериментов, по результатам которых и принимается или не принимается то или иное утверждение (конечно, после достаточно большого испытательного срока). В этом случае при последующей проверке результаты могут быть пересмотрены, и нельзя быть уверенными на сто процентов, что установленный вами факт — истина в последней инстанции.

Конечно, часто удается найти более общий и совершенный вариант известной математической теоремы, что, впрочем, не упраздняет ее истинности. Продолжая аналогию со строительством, можно сказать, что здание при этом остается столь же крепким; производится всего лишь небольшое расширение или перепланировка, не затрагивающая фундамента. Иногда косметического ремонта оказывается недостаточно, и тогда приходится даже разрушать «интерьер» здания и создавать новый. Несмотря на то что старые теоремы все так же справедливы, порой возникает потребность в новых разработках или свежем наборе данных, чтобы создать более полную картину.

Наиболее важные теоремы обычно проверяют и перепроверяют много раз и многими способами, не оставляя ни единого шанса на ошибку. Разумеется, доказательства менее очевидных теорем, которые не подверглись столь тщательной проверке, могут содержать ошибки. Если ошибка обнаружена, комнату в здании или даже целое крыло приходится разрушать и выстраивать заново. И все же остальное здание — прочное сооружение, прошедшее проверку временем, — остается нетронутым.

Одним из величайших архитекторов геометрии стал Пифагор, которому приписывают открытие формулы, представляющей собой одно из самых прочных сооружений из когда-либо возведенных в математике. Теорема Пифагора (именно такое название она носит) утверждает, что в прямоугольном треугольнике, то есть в треугольнике, один из углов которого равен 90°, квадрат длины наибольшей из сторон (гипотенузы) равен сумме квадратов двух более коротких (катетов). Бывшие и нынешние школьники легко вспомнят соответствующую формулу: a2 + b2 = c2. Это весьма простое, но невероятно мощное утверждение столь же важно сегодня, как и 2500 лет назад, когда оно было сформулировано. Применение данной теоремы не ограничивается школьной математикой. Эта теорема настолько важна и всеобъемлюща, что я, например, использую ее почти каждый день, практически не замечая этого.

На мой взгляд, теорема Пифагора — важнейшее утверждение в геометрии, одинаково важное как для современной математики высоких размерностей, например для нахождения расстояний в пространствах Калаби-Яу и решения эйнштейновских уравнений движения, так и для расчетов на двухмерной плоскости, такой как лист бумаги с домашним заданием, или в трехмерной классной комнате начальной школы. Значимость этой теоремы обусловлена тем, что ее можно использовать для расчета расстояний между двумя точками в пространстве любой размерности. Как я уже сказал в начале этой главы, геометрия постоянно использует понятие расстояния, по причине чего эта формула является основой практически всех расчетов.

Более того, я нахожу эту теорему также чрезвычайно красивой, хотя о вкусах, как известно, не спорят. Нам, как правило, нравятся те вещи, которые хорошо нам знакомы, — вещи, которые стали для нас настолько привычными, настолько естественными, что мы считаем их само собой разумеющимися, подобно восходу и заходу солнца. Кроме того, теорема Пифагора очень лаконична — три простые переменные, возведенные во вторую степень, a2 + b2 = c2, — ее запись почти столь же кратка, как и запись других известных законов, таких как F = ma или E = mc2. Красота для меня заключается в элегантности столь простого утверждения, находящегося в настолько полном согласии с природой.

Помимо ценности теоремы Пифагора самой по себе, без сомнения являющейся краеугольным камнем геометрии, не менее важным представляется и тот факт, что ее истинность была доказана, и это доказательство стало первым зафиксированным доказательством в математике. Египетские и вавилонские математики использовали отношение между катетами и гипотенузой прямоугольного треугольника задолго до рождения Пифагора. Но ни египтяне, ни вавилоняне не только никогда не пытались доказать эту теорему, но, по-видимому, и само понятие доказательства им было незнакомо. По словам математика Э. Т. Белла, именно доказательство теоремы и стало наибольшим вкладом Пифагора в геометрию:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.