Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул - Кейт Бибердорф Страница 9
Химия по жизни. Как устроен наш быт, отношения, предметы и вещи с точки зрения химических реакций, атомов и молекул - Кейт Бибердорф читать онлайн бесплатно
Давайте рассмотрим такое взаимодействие в реальности. Когда между углеродом и фтором образуется связь (C – F), ученые первым делом смотрят в периодическую таблицу. Очень важно определить, какой атом будет более электроотрицательным. (В данном случае более электроотрицательным будет фтор.) Из этого мы понимаем, что валентные электроны углерода переместятся к фтору через образованную ковалентную связь.
Так как электроны с большей электроотрицательностью забирают большую часть электронов в связи, очень часто им присваивается символ «частичного» негативного заряда (δ—). Электроотрицательный электрон притягивает электроны, поэтому обладает частично негативным зарядом. Как вы уже понимаете, электроположительный атом, только что потерявший часть своих электронов, будет иметь частично положительный заряд (δ+). Слово «частично» указывает на то, что электроны не до конца распределились между атомами – обычно это происходит в ковалентных связях («руки» атомов).
Все это прямо противоположно связям, образующимся между металлами и неметаллами. Связь металл – неметалл возникает точно так же, как и ковалентная: атомы находятся достаточно близко друг к другу и между ними появляется притяжение. Но, в отличие от ковалентных связей, такой тип связи образуется только в том случае, если электроны передаются от одного атома к другому. А точнее, когда металл передает свой электрон неметаллу. В момент передачи образуется ионная связь.
Очень важно понимать, что при образовании ионной связи атомы не имеют общих электронов. Они передают свои электроны, из-за чего образуется положительный ион металла и отрицательный ион неметалла (в отличие от частичных зарядов в ковалентных связях). Всегда помните, что противоположности притягиваются, из-за чего катион металла будет невероятно сильно тянуться к аниону неметалла.
Если ковалентную связь можно сравнить с двумя людьми, состоящими в здоровых отношениях, где любовь дают и принимают, то ионную связь можно сравнить с отношениями, где один только дает, а другой – только забирает. Ионная связь является односторонней, так как катион (с меньшим количеством электронов) всегда отдает, а анион (с бо́льшим количеством электронов) всегда принимает.
Как и ковалентные, ионные связи постоянно вокруг нас. Например, столовая соль образована с помощью ионной связи между атомом натрия и атомом хлора. Когда натрий (металл) отдает свой электрон хлору (неметалл), атом хлора становится анионом, а атом натрия – катионом. В столовой соли хлор – это «принимающий» партнер, а натрий – «отдающий».
Теперь, когда вы понимаете основы образования ковалентных и ионных связей, давайте перейдем к более интересным вещам.
Секретная формула
Для записи атомов в молекуле мы используем молекулярные формулы. Есть два типа формулы: структурная и сокращенная. Большинство людей знакомы с сокращенной молекулярной формулой, из которой понятно, какие атомы находятся в молекуле и в каком соотношении.
Давайте поговорим о H2O. Вода имеет два атома водорода и один атом кислорода, поэтому ее сокращенной молекулярной формулой будет H2O. Индекс два после водорода указывает на то, что вода состоит из двух атомов водорода. В сокращенных молекулярных формулах индекс всегда пишется после атома, к которому он относится.
Однако из сокращенной молекулярной формулы непонятно, какие связи образованы внутри молекулы. Если вы посмотрите на молекулярную формулу H2O, то можете (неверно) предположить, что молекула выглядит вот так: H – H – O. Может показаться, что два атома водорода связаны друг с другом; однако на самом деле молекула воды образуется в том случае, когда каждый атом водорода связан с атомом кислорода, и выглядит вот так: H – O – H. Вы не можете просто посмотреть на H2O и сразу же определить, как связаны между собой атомы водорода и кислорода (конечно, если вы не сильны в химии).
Мы, химики, используем формулу другого типа – структурную молекулярную, чтобы обозначить расположение атомов в молекуле. Так как каждый атом водорода связан с атомом кислорода, его структурная формула выглядит вот так: HOH. Из этой формулы понятно, что водород А связан с атомом кислорода, который также связан с водородом В: H – O – H. Но как понять, какую формулу нужно использовать? Это зависит от обстоятельств.
Химики предпочитают структурные формулы, поскольку из них можно извлечь больше полезной информации. Однако при работе с молекулой, содержащей громадное количество атомов, нет смысла составлять структурную формулу, ведь она получится длинной, сложной и неудобной. Следовательно, самым распространенным способом записи молекулы будет сокращенная молекулярная формула.
Помните, я как-то говорила, что в двойных и тройных связях расстояние между атомами должно быть небольшим? Все из-за того, что молекулы имеют уникальную форму. Возможно, вы удивитесь, если я скажу, что форма молекулы не определяется атомами, из которых она образована. На самом деле ее форма зависит от того, чем одержимы все химики. От электронов.
Еще в 1950-х годах два химика, Рональд Гиллеспи и Рональд Синдей Найхолм, заметили некоторые закономерности в форме молекул. Неудивительно, что они быстро определили зависимость формы молекулы от расположения электронов в пространстве, а не от идентификации атомов. В 1957 году Гиллеспи и Найхолм опубликовали теорию ОЭПВО (теория отталкивания электронных пар валентной оболочки), благодаря которой можно было с точностью предсказать геометрическую форму любой молекулы, зная количество и расположение электронов.
Например, мы знаем, что молекула с двумя атомами имеет линейную форму. Не существует другого способа объединения двух атомов с помощью одной связи. Все молекулы с двумя атомами будут иметь линейную форму, вне зависимости от того, из каких атомов они состоят.
Угарный газ – это классический пример двухатомной молекулы. Углерод и кислород создают тройную связь между своими атомами, а поскольку атомов всего лишь два, молекула имеет линейную форму. Однако этот прозрачный, не имеющий запаха газ очень опасен для человека, а также легко воспламеняется. Когда вы вдыхаете угарный газ, его крошечная молекула связывается с гемоглобином в вашей крови и заменяет собой молекулы кислорода. Вот поэтому большое количество «тихого убийцы» может быть смертельным.
Благодаря экспериментам Гиллеспи и Найхолм смогли «подогнать» теорию ОЭПВО под молекулы с любым количеством атомов. Основную идею, на которой строится эта теория, вы уже поняли: одни электроны всегда будут отталкивать другие.
Мне нравится идея того, что электронам внутри молекулы нужно личное пространство, а это означает, что каждая связь должна располагаться как можно дальше от других связей. То, как располагаются электроны, химики называют геометрией электронов в молекуле. Не забывайте, что все дело в электронах, так как форма молекулы зависит от их общего
Жалоба
Напишите нам, и мы в срочном порядке примем меры.