Майкл Газзанига - Кто за главного? Свобода воли с точки зрения нейробиологии Страница 20
Майкл Газзанига - Кто за главного? Свобода воли с точки зрения нейробиологии читать онлайн бесплатно
Естественный отбор поощряет бессознательные процессы. Быстрота и автоматизм — вот залог успеха. Сознательные процессы дорого обходятся: они требуют не только много времени, но и много памяти. Неосознаваемые процессы, наоборот, протекают быстро и на основе правил. Яркие примеры таких процессов легко продемонстрировать с помощью оптических иллюзий. Наша зрительная система регистрирует определенные сигналы и автоматически подстраивает под них наше восприятие.
Эти столы кажутся неодинаковыми, хотя на самом деле их размеры и форма полностью совпадают. Если вы их измерите, то убедитесь, что они идентичны.
Посмотрите на два стола на рисунке (на нем представлена так называемая иллюзия повернутых столов, автор которой — Роджер Шепард): они совершенно одинаковые по форме и площади. Никто не верит! Кстати, когда эту картинку помещают в учебник по психологии, студенты вырезают изображения столов, чтобы убедиться, действительно ли они полностью накладываются друг на друга. Ваш мозг вычисляет и вносит в восприятие поправки, приспосабливаясь к визуальной информации об ориентации столов, — и вы не в силах ему воспрепятствовать. Даже после того, как вы вырежете столешницы, наложите их друг на друга и убедитесь, что они абсолютно одинаковых размеров, вы не сможете сознательно изменить зрительный образ так, чтобы столы стали казаться одинаковыми. Таким образом, когда некие стимулы обманом заставляют вашу зрительную систему создать иллюзию, а вы понимаете, что вам морочат голову, иллюзия все равно не исчезает. Та часть зрительной системы, которая ее вызывает, невосприимчива к корректировкам, основанным на осознанном знании[20].
Иллюзия Мюллера-Лайера.
Некоторые убедительные иллюзии, однако, могут не влиять на поведение. Например, демонстрируя знаменитую иллюзию Мюллера-Лайера, людей просят показать пальцами длину линий, обрамленных с обоих концов стрелками, которые обе направлены либо внутрь, либо наружу. Хотя стрелки могут изменять воспринимаемую длину отрезка и обманывать глаз (все, как правило, говорят, что линия с “остриями” на концах короче), люди не вносят соответствующую корректировку в расстояние между пальцами. Рука не оказывается обманутой. Значит, процессы, определяющие внешнее поведение, изолированы от тех, которые обусловливают восприятие. Так, зрительно-моторный процесс, отвечающий на визуальный стимул, может проходить независимо от восприятия этого же стимула в тот же самый момент1. Однако все меняется, когда подключается сознание. Если попросить человека показать длину отрезков пальцами только после того, как пройдет немного времени, он сделает поправку и покажет разную длину.
При этом стимулы, воспринятые не сознательно, могут влиять на поведение. Например, в одном французском исследовании Станислас Дехане2 и его коллеги в течение короткого времени (43 миллисекунды) показывали участникам эксперимента какое-либо простое число, записанное цифрами или словом, в качестве стимула, который оказывает воздействие на последующие реакции. За ним следовали маскирующие стимулы — два бессмысленных набора цифр. Добровольцы не могли ни достоверно сказать, присутствует ли то простое число в случайных последовательностях, ни выделить его из них. Иными словами, ключевое число или слово не попадало в их сознание. Затем участникам высвечивали целевое число и предлагали нажать на кнопку одной рукой, если оно больше пяти, и другой, если меньше. В том случае, когда числа — и первое простое, и целевое — были оба меньше либо больше пяти, скорость реакции испытуемых была выше. С помощью методов визуализации мозга исследователи показали, что первое число, которое никогда не достигало сознания и проходило незамеченным, на самом деле активизировало моторную кору. Если вспомнить еще и наблюдение, что стимулы, не воспринимаемые сознательно, могут вызвать устойчивые перцептивные постэффекты3, становится очевидным, что значительная часть работы мозга проходит вне сферы осознанного понимания и контроля. (“Мой мозг заставил меня сделать это!”) Итак, системы, встроенные в наш мозг, осуществляют свои операции автоматически, когда сталкиваются со стимулом в своем поле деятельности, часто без нашего осознанного понимания.
Автоматичность может быть также приобретена. Она приходит с практикой. Наряду с игрой на музыкальных инструментах другой пример — печатание на клавиатуре. Если вы хорошо натренировались, то можете набирать текст, даже не думая об этом. (И каждый из нас встречал несколько таких книг!) Однако, если я спрошу, где на клавиатуре находится буква “в”, вам придется остановиться и задуматься. Это долгий процесс. Работа “на автомате” куда более эффективна. Автоматизированные процессы — вот что делает нас экспертами. Рентгенологи, анализирующие маммограммы, делают это тем точнее и быстрее, чем больше маммограмм изучили. Система распознавания образов в их мозге натренировалась и уже автоматически узнает тени патологических тканей. Люди становятся экспертами, развив способность автоматически распознавать образы, значимые в определенной области.
Почему мы чувствуем себя цельными?
Теперь, когда мы знаем (осознаем!) тот факт, что в основном обрабатываем информацию бессознательно и автоматически, вернемся к вопросу, поставленному в конце предыдущей главы. Если так много сложных систем работает в нас на подсознательном уровне, специализированно и рассредоточенно, почему мы ощущаем себя цельными? Я считаю, что ответ на этот вопрос заключен в левом полушарии — в одном из его модулей, на который мы натолкнулись в ходе многолетних исследований. Опять-таки наши пациенты с расщепленным мозгом позволили получить потрясающие данные.
Через несколько лет после начала наших экспериментов мы работали с очередной группой пациентов с расщепленным мозгом на Восточном побережье. Мы проверяли, что они почувствуют, когда мы подсунем сообщение их правому полушарию и вынудим левую руку совершить какое-нибудь действие. Что они скажут себе, когда ни с того ни с сего их левая рука что-то сделает? Представьте, что вы читаете эту книгу и вдруг замечаете, что ваша рука начинает щелкать пальцами. Как вы себе это объясните? Мы придумали эксперимент, в котором могли спрашивать пациента, что, как он думает, делает его левая рука. Эти эксперименты выявили еще одну способность левого полушария, которая нас просто ошеломила.
Мы показали пациенту с расщепленным мозгом два изображения: куриную лапку в правом поле зрения, так что ее видело только левое полушарие, и снежный пейзаж в левом поле зрения — только для правой половины мозга. Затем перед ним поместили набор картинок, которые были доступны обоим полушариям, и предложили выбрать одну из них. Левая рука пациента указала на лопату (что было самым подходящим ответом на снежный пейзаж), а правая — на курицу (самый подходящий ответ на лапку). Мы спросили, почему он выбрал именно их. Его речевой центр в левом полушарии ответил: “Все просто. Куриная лапа относится к курице”, — легко объяснив то, что левый мозг знал, ведь он видел изображение лапы. Потом пациент посмотрел на свою левую руку, указывавшую на лопату, и не моргнув глазом сказал: “А чтобы вычистить курятник, нужна лопата”. Левый мозг, обратив внимание на действия левой руки, но не зная, почему она выбрала этот предмет, мгновенно поместил это в такой контекст, который бы все объяснял. Он интерпретировал выбор лопаты в контексте, соответствующем тому, что он знал, а знал он лишь о куриной лапке. Он ничего не знал о снежном пейзаже, но должен был объяснить картинку лопаты в левой руке. Разумеется, курицы оставляют грязь, а ее нужно убирать. Вот и разумное объяснение! Интересно, что левое полушарие не сказало: “Я не знаю”, — хотя такой ответ был бы по-настоящему верным. Оно задним числом придумало другой, который соответствовал ситуации. Оно соорудило ложное воспоминание, использовав доступную ему информацию и собрав ее в приемлемый ответ. Мы назвали этот левополушарный модуль интерпретатором4.
Благодаря нашим пациентам с расщепленным мозгом мы наблюдали этот процесс в действии много раз. Так, например, мы передали слово “колокол” правому мозгу, а слово “музыка” — левому. Пациент сказал, что видел слово “музыка”. Когда его попросили показать на картинку, соответствующую тому, что он только что видел, он выбрал колокол, хотя там были другие картинки, лучше изображавшие музыку. Тогда мы спросили, почему он выбрал колокол. “Ну, — ответил он, — в последний раз, когда я слышал какую-то музыку, это были колокола, звонившие у вас здесь снаружи”. (Он говорил о расположенной неподалеку колокольне.) Его говорящему левому полушарию пришлось состряпать целую историю, чтобы объяснить, почему он указал на колокол. В другом эксперименте мы предъявили слово “красный” левому полушарию пациента, а “банан” — правому. Затем мы разложили на столе ручки разных цветов и попросили его нарисовать картинку левой рукой. Он взял красную ручку (это левое полушарие приняло простое решение) и нарисовал левой рукой банан (запечатленный правым полушарием). Когда я спросил, почему он нарисовал банан, его левое полушарие, совершенно не представлявшее, почему левая рука изобразила именно банан, ответило: “Этой рукой проще всего нарисовать что-то вроде банана, поскольку она слабее”. Опять-таки, левый мозг не сказал: “Я не знаю”, — что было бы самым правильным ответом.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.