Александр Лурия - Основы нейропсихологии Страница 27
Александр Лурия - Основы нейропсихологии читать онлайн бесплатно
Разбирая далее основные картины изменений высших психических процессов при поражениях отдельных зон мозговой коры, мы еще будем иметь случай наглядно убедиться в этом положении.
110
Резюмируем сказанное выше.
Вторым функциональным блоком коры головного мозга является блок приема, переработки и хранения экстероцептивной информации. Он расположен в задних отделах полушарий и включает в свой состав зрительные (затылочные), слуховые (височные) и общечувствительные (теменные) отделы коры головного мозга и соответствующие подкорковые структуры.
Аппараты этого (как и следующего) блока имеют иерархическое строение, распадаясь на первичные (проекционные) зоны, которые принимают информацию и дробят ее на мельчайшие составные части, вторичные (проекционно-ассоциативные) зоны, которые обеспечивают кодирование (синтез) этих составных частей и превращают соматотопическую проекцию в функциональную организацию, и третичные зоны (или зоны перекрытия), обеспечивающие совместную работу различных анализаторов и выработку надмодальных (символических) схем, лежащих в основе комплексных форм познавательной деятельности.
Указанные иерархически построенные зоны коры разбираемого блока работают по принципам убывающей модальной специфичности и возрастающей функциональной латерализации. Оба эти принципа и обеспечивают возможность наиболее сложных форм работы мозга, лежащих в основе наиболее высоких видов познавательной деятельности человека, генетически связанных с трудом, а структурно — с участием речи в организации психических процессов.
Таковы самые общие принципы работы второго функционального блока головного мозга.
3 БЛОК ПРОГРАММИРОВАНИЯ, РЕГУЛЯЦИИ И КОНТРОЛЯ СЛОЖНЫХ ФОРМ ДЕЯТЕЛЬНОСТИ
Прием, переработка и хранение внешней информации составляют только одну сторону психической жизни человека. Ее другую сторону составляет организация активной сознательной психической деятельности. С этой задачей и связан третий из основных функциональных блоков мозга — блок программирования, регуляции и контроля за протекающей деятельностью.
Человек не только пассивно реагирует на поступающие сигналы. Он формирует планы и программы своих действий, следит за их выполнением и регулирует свое поведение, приводя его в соответствие с этими планами и программами; наконец, он контролирует свою сознательную деятельность, сличая эффект своих действий с исходными намерениями и корригируя допущенные им ошибки.
111
Все эти процессы активной сознательной деятельности требуют совсем иных мозговых аппаратов, чем те, которые мы описали ранее. Если даже в простых рефлекторных актах наряду с афферентной стороной существует эффекторная сторона и аппараты обратной связи служат контрольным сервомеханизмом, то тем более необходимы такие специальные контролирующие нервные образования в сложных психических актах. Этим задачам и служат аппараты третьего блока головного мозга, функцию которого мы уже обозначили выше.
Аппараты третьего функционального блока расположены в передних отделах больших полушарий, спереди от передней центральной извилины (рис. 43).
Рис. 43. Схема расположения лобных
(префронтальных) отделов мозга
у человека
«Выходными воротами» этого блока является двигательная зона коры (4-е поле Бродмана), V слой которой содержит гигантские пирамидные клетки Беца, волокна от которых идут к двигательным ядрам спинного мозга, а оттуда к мышцам, составляя часть большого пирамидного пути. Эта зона коры, как мы уже видели (рис. 23), топографически построена так, что ее верхние отделы являются источником волокон, идущих к нижним конечностям противоположной стороны, средние — к верхним конечностям противоположной стороны, а нижние — волокон, направляющихся к мышцам лица, губ и языка. Мы уже говорили, что в значительной степени в этой зоне представлены органы, имеющие наибольшее функциональное значение и нуждающиеся в наиболее тонкой регуляции.
Первичная двигательная кора не может работать изолированно; все движения человека в той или иной степени нуждаются в тоническом пластическом фоне, который обеспечивается базаль-ными двигательными узлами и волокнами экстрапирамидной системы. Значение этой системы, обеспечивающей фон всех произвольных движений, служило предметом многочисленных исследований, и мы не будем останавливаться на них особо.
Первичная двигательная кора является, как мы сказали, «выходными воротами» двигательных импульсов, или, как говорил выдающийся исследователь движений Н. А. Бернштейн, «передними рогами головного мозга». Естественно, однако, что двигательный состав тех импульсов, которые она посылает на периферию, должен быть хорошо подготовлен, включен в определенные программы. Без такой подготовки импульсы, направляемые через переднюю центральную извилину, не могут обеспечить целесообразные движения.
Подготовка двигательных импульсов не может быть выполнена самими пирамидными клетками: она должна быть обеспечена как в аппарате самой передней центральной извилины, так и в аппаратах надстроенных над ней вторичных зон двигательной коры, которые готовят двигательные программы, лишь затем передающиеся на гигантские пирамидные клетки.
112
В пределах передней центральной извилины аппаратом, участвующим в подготовке двигательных программ и передаче их на гигантские пирамидные клетки, являются верхние слои коры и гли-альное серое вещество, окружающее нейроны. Как было в свое время показано Бенином (1943, 1948), отношение массы глиального вещества к массе нейронов передней центральной извилины резко возрастает по мере эволюции, так что величина глиального коэффициента у человека вдвое больше, чем у высших обезьян, и почти в пять раз больше, чем у низших (табл. 8).
Таблица 8
Развитие структуры коры передней центральной извилины в филогенезе
(по Бенину, 1951)
Вид
Величина
клеток Беца,
мк
Число клеток
Беца (в 1 мм 3
серого вещества)
Отношение массы
глиального вещества к массе
клеток Беца
Низшие обезьяны
3,7
31,0
52
Высшие обезьяны
—
—
113
Человек
6Д
12,0
233
Эти данные указывают на то, что по мере перехода к высшим ступеням эволюционной лестницы и особенно у человека двигательные импульсы, генерируемые гигантскими пирамидными клетками Беца, становятся все более управляемыми; эта управляемость и обеспечивается, мощно возрастающими аппаратами глиального вещества, окружающего клетки Беца.
113
Передняя центральная извилина является проекционной зоной, исполнительным аппаратом мозговой коры. Решающее значение в подготовке двигательных импульсов имеют надстроенные над ней вторичные и третичные зоны, подчиняющиеся тем же принципам иерархического строения и убывающей специфичности, которые мы сформулировали, обсуждая принципы функциональной организации блока приема, переработки и хранения информации. Основным отличием здесь является тот факт, что если во втором, афферентном, блоке мозга процессы идут от первичных к вторичным и третичным зонам, то в третьем, эфферентном, блоке процессы идут в нисходящем направлении, начинаясь в наиболее высоких — третичных и вторичных — зонах, где формируются двигательные планы и программы, переходя затем к аппаратам первичной двигательной зоны, которая посылает подготовленные двигательные импульсы на периферию.
Другое отличие третьего, эфферентного, блока коры от второго, афферентного, блока, заключается в том, что этот блок не содержит модально-специфических зон, представляющих собой отдельные экстероцептивные анализаторы, а состоит из аппаратов эфферентного, двигательного типа, находящихся под постоянным влиянием аппаратов афферентного блока. На роли афферентных аппаратов в построении движений мы остановимся далее, при обсуждении вопроса о взаимодействии основных функциональных блоков мозга.
Как мы уже говорили ранее, роль основной вторичной зоны обсуждаемого нами блока играют премоторные отделы лобной области. Морфологически они сохраняют тот же тип вертикальной исчерченности (Г.И.Поляков, 1965, 1966, 1969), который характерен для всей двигательной коры, но отличаются несравненно большим развитием верхних слоев — слоев малых пирамид. Раздражение этих отделов коры вызывает не сокращения отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (повороты глаз, головы и всего тела и хватающие движения руки), что уже само по себе указывает на интегративную роль этих зон коры в организации движений.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.