Тор Норретрандерс - Иллюзия пользователя. Урезание сознания в размерах Страница 5

Тут можно читать бесплатно Тор Норретрандерс - Иллюзия пользователя. Урезание сознания в размерах. Жанр: Научные и научно-популярные книги / Психология, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Тор Норретрандерс - Иллюзия пользователя. Урезание сознания в размерах читать онлайн бесплатно

Тор Норретрандерс - Иллюзия пользователя. Урезание сознания в размерах - читать книгу онлайн бесплатно, автор Тор Норретрандерс

Разница между этими тремя состояниями не настолько велика, как можно было бы подумать. На примере одного вещества, H2O (которое состоит из атома кислорода — О- и атомов водорода — Н —, последних содержится два на молекулу) мы знакомы со всеми тремя состояниями вещества: лед, вода и пар. При низких температурах молекулы передвигаются очень медленно. Структура поддерживается в постоянной форме. Если температура немного повышается, молекулы начинают двигаться быстрее и могут меняться местами друг с другом, но они все еще держатся вместе. При температуре выше 100 градусов Цельсия все молекулы разделяются и начинают свободно перемещаться в форме пара — как газ. Переход между этими тремя состояниями или фазами носит название «фазовый переход». При всех движениях, которые совершаются при повышении тепла, молекулы движутся хаотично, туда-сюда. Движение, вызванное выделением тепла, не имеет направления.

Но тепло — это не единственная форма движения материи: электрический ток также является проявлением движения. Но в случае электричества не все молекулы движутся беспорядочно. У электрического тока имеется одна составляющая атомов молекулы — отрицательно заряженный электрон — который движется в определенном направлении. При возникновении электрического тока наблюдается больше порядка, чем при хаотическом тепловом движении. Аналогично атмосферный ветер является иным, нежели тепло, проявлением: огромное количество молекул движется в определенном направлении, вместо того, чтобы просто топтаться на месте друг вокруг друга. Вот почему ветряные мельницы являются разумным способом производства электричества, в то время как атомные и работающие на нефти электростанции не столь элегантны — ведь на них применяется топливо, которое нагревает воду, движущую турбины. Обходной путь с использованием горячей воды — это высокая цена, которую приходится платить за излюбленные игрушки инженеров.

В любом случае мы многое можем понять о материи, если поймем, что она состоит из множества мельчайших компонентов, которые находятся в той или иной стадии движения. Движение подразумевает использование определенного количества энергии, либо упорядоченной, как в случае с ветром, либо неупорядоченной, как в случае с теплом. Ветер более полезен с точки зрения генерирования электрического тока, нежели тепло, как раз потому, что у него есть направление движения. Но тем не менее в тепле содержится масса энергии — просто ею тяжелее воспользоваться, так как она содержится в настолько беспорядочном движении.

Температура — это выражение типичной скорости, с которой движутся молекулы. То, что мы подразумеваем под теплом и измерением температуры — это не что иное, как неупорядоченное движение.

Значит ли это, что все молекулы газа движутся с совершенно одинаковыми скоростями? Как им удается угнаться друг за другом, когда мы включаем обогреватель?

Именно эту дилемму и удалось разрешить Максвеллу.

Впервые в истории физики он ввел статистическую концепцию. Не все молекулы движутся с одинаковой скоростью. У некоторых из них огромная скорость, у других намного меньшая. Но их скорость имеет характерное распределение — распределение Максвелла-Больцмана, которое утверждает: у молекул есть определенная средняя скорость, но они проявляют вариации в отношении этой средней скорости. Если среднее значение является высоким — температура будет высокой. Если среднее значение низкое — температура низкая.

В материи с заданной температурой молекулы проявляются со многими различными скоростями. У большинства из них скорость близка к среднему значению. В горячей материи можно обнаружить больше молекул с высокими скоростями, чем в холодной материи. Но в холодной материи можно обнаружить скоростные молекулы, и в горячей — молекулы, которые почти впали в летаргию.

Это дает нам возможность понять процесс испарения. Чем выше температура, тем больше будет молекул с высокими скоростями. Если представить себе процесс испарения в виде крошечных молекул, которые как ракеты отправляются в космос, то мы увидим: чем выше температура жидкости, тем больше молекул отправятся в путь.

Но у статистического распределения скоростей есть и интересное последствие: для каждой отдельно взятой молекулы невозможно определить, к какой температурной группе она относится. Другими словами, каждая индивидуальная молекула не имеет представления, частью какой температурной составляющей она является.

Температура — это концепция, которая приобретает значение только в том случае, если у нас имеется сразу много молекул. Было бы нонсенсом спрашивать каждую молекулу, какова ее температура. Ведь молекула этого не знает: все, что ей известно — это скорость, причем только ее собственная.

Или все же знает? Через какое-то время молекула газа сталкивается с другими молекулами и приобретает определенное «знание» о том, какова их скорость. Именно поэтому материя поддерживает ровную температуру: молекулы сталкиваются друг с другом и обмениваются скоростями: достигается состояние баланса. Когда мы нагреваем материю, мы можем делать это снизу. Результирующая высокая скорость быстро распределится среди всех молекул.

Вклад Максвелла заключался в том, что он основал учение о законах, управляющих подобным поведением. Движение и столкновения крошечных молекул могут быть красиво описаны по старым законам Ньютона — это движение и столкновения, в которых участвуют миллиарды шаров. Оказалось, что если у вас есть достаточное количество шаров (а в воздухе просто ужасно много молекул — приблизительно 1,000,000,000,000,000,000,000,000,000 [1027] молекул в обычной комнате), результатом действия ньютоновских законов движения становятся статистические законы материи, с которыми мы уже знакомы: правила для температуры, давления и объема, правила уменьшения доступности энергии тепла.

Но в этой картине есть кое-что странное. Законы Ньютона для миллиардов шаров и другие механические явления — это простые и красивые законы. Они описывают обратимые явления — эти явления могут быть обращены во времени. Во Вселенной Ньютона время может течь в обратную сторону — а мы даже не заметим разницы. Но в мире термодинамики поведение шаров связано с такими причудами, как второй закон термодинамики. Если смешать горячее и холодное, разделить их снова будет невозможно. Когда ваш кофе остыл, уже произошло нечто необратимое.

Толпа «высокоскоростных» молекул смешивается с толпой «низкоскоростных»: шарики сталкиваются друг с другом и приобретают новую среднюю скорость. Это позволяет раз и навсегда уравнять разницу: вы не сможете отделить молекулы, которые ранее имели высокую скорость, и те, которые ранее двигались на низкой скорости, так как каждая индивидуальная молекула не имеет ни малейшей мысли о том, частью какой температуры она являлась в тот или иной момент.

Как только молекулярная колода была перетасована, вы не сможете вернуть ее в прежнее состояние.

Эту проблему удалось точно сформулировать Людвигу Больцману примерно в период смерти Максвелла, в 1879 году: не существует высокой вероятности того, что законы Ньютона заставят все молекулы внезапно вернуться к своей первоначальной скорости перед смешиванием. На самом деле — это очень маловероятно. Со временем молекулы смешиваются все больше и больше. Холод и жар уравниваются до тепла.

Вот почему растет энтропия. Энтропия — это выражение недоступности данного вида энергии. Если эта энергия находится в форме тепла — измеряемого как температура — использовать ее можно только в том случае, если смешать что-то горячее с чем-то холодным (горячий пар и холодный окружающий воздух, которые смешиваются в паровом двигателе, к примеру). Но как только вы смешаете эти субстанции, вы уже не сможете их разделить и ожидать, что процесс будет работать снова.

Причина этого — возникающее выравнивание, и это выравнивание является необратимым. Это и есть причина того, что энтропия Вселенной возрастает. Необратимо.

Больцману удалось достичь понимание сущности тепла и понимания того, что вскоре начали рассматривать как самый фундаментальный закон природы: второй закон термодинамики. В определенном смысле это еще и понимание того, что на самом деле означает течение времени: молекулы обмениваются скоростями, их движение уравнивается, они обретают среднюю скорость — баланс. Это и есть разница между «тогда» и «теперь» — мы движемся от разницы к однообразию.

Но многие физики, современники Больцмана, критиковали его точку зрения. Мы не можем, говорили они, вывести подобный необратимый и безотзывный закон, как закон термодинамики, из законов Ньютона о движении и кинетике — физики бильярдного стола! Ведь обратимость придает картине мира Ньютона такое могущество: все уравнения можно обернуть во времени, все процессы суть одно и то же, движутся ли они вперед или назад.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.