Елена Литягина - Психология здоровья глаз. Теория и практика. Страница 4

Тут можно читать бесплатно Елена Литягина - Психология здоровья глаз. Теория и практика.. Жанр: Научные и научно-популярные книги / Психотерапия, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Елена Литягина - Психология здоровья глаз. Теория и практика. читать онлайн бесплатно

Елена Литягина - Психология здоровья глаз. Теория и практика. - читать книгу онлайн бесплатно, автор Елена Литягина

2. Средняя оболочка глазного яблока (мягкая) – сосудистая, (отсутствующая в области зрачка) на всем протяжении, где она контактирует с сетчаткой, включает помимо сосудов, пигментные клетки. Содержащийся в них черный пигмент обеспечивает поглощение падающего на них света. В передней части глаза сосудистая оболочка содержит пигментные клетки, образующие радужную оболочку (5) – радужку, окружающую зрачок. Это та часть глаза, пигмент которой дает глазу его цвет. Она действует, как диафрагмальное отверстие в фотоаппарате; ее мышечные волокна расширяют, или сужают зрачок (6), контролируя интенсивность света, попадающего на сетчатку.

3. Наружная оболочкасклера, является продолжением твердой оболочки мозга – она непрозрачная, препятствует проникновению света, только в передней части глаза она становится прозрачной и носит название – роговица (7). Это первая, самая сильная линза, с неподвижным фокусом состоящая из пяти различных слоев клеток.

4. Хрусталик – мягкий, прозрачный, эластичный – находится сразу позади радужки.

8. Ресничное тело – его роль изменять форму хрусталика движением цилиарной (кольцевой) мышцы, а также вырабатывать внутриглазную жидкость, которая циркулирует в первой камере между хрусталиком и внутренней поверхностью роговицы.

9. Внутренняя (главная) камера глаза находится позади хрусталика. Она наполнена веществом, которое называется стекловидным телом, имеющим желеподобную структуру; это вещество делает глаз твердым и эластичным.

Глазу, как оптическому прибору, присущи различные несовершенства. Самое распространенное из них – аметропия: близорукость или дальнозоркость. Самая распространенная причина близорукости (Б) – глазное яблоко, которое слишком «длинно», поэтому лучи света образуют изображение перед сетчаткой.

Рис. 3. Схема хода световых лучей

при дефектах зрения: 1– в нормальном глазу; 2– без коррекции; 3-скоррекцией.

Обычно, близорукость корректируется вогнутыми линзами. При дальнозоркости (А) глазное яблоко «слишком коротко», так что изображение не может получиться внутри глаза. Как правило, дальнозоркость корректируется выпуклыми линзами (Рис.3).

.3. 

Роль мышечных волокон в функционировании органов зрения

Глаз – самый подвижный из всех органов чувств. Регистрация движений глаз называется

окулографией

. Амплитуду движения глаз определяют в угловых градусах. Наиболее распространенным методом регистрации движения глаз считается электроокулография. Он по сравнению с другими методами, такими как фотооптический, фотоэлектрический, и электромагнитный исключает контакт с глазным яблоком, может проводиться при любом освещении, и тем

самым не нарушает естественных условий зрительной активности.

Глазодвигательные мышцы делятся на внутренние и наружные.

Рис. 4. Мышцы глаза

Первые относятся к гладким мышцам, они регулируют кривизну хрусталика (цилиарная или кольцевая или ресничная мышца) и изменение диаметра зрачка (сфинктер зрачка) – зрачковый рефлекс. Вторые – наружные относятся к поперечнополосатым, их шесть – это три пары глазодвигательных мышц, располагающихся в глазнице. Это четыре прямые (верхняя, нижняя, медиальная и латеральная) и две косые (верхняя и нижняя) мышцы. Прямые мышцы поворачивают глазное яблоко в соответствующем направлении, косые поворачивают глаз вокруг оптической оси.

Глазодвигательные мышцы имеют и другую функцию, они могут помогать хрусталику глаза фокусировать изображение на сетчатке, когда предметы находятся на разном расстоянии от глаза. Мышцы слегка «растягивают» или «сжимают» глазное яблоко, перемещая тем самым сетчатку глаза, удаляя или приближая ее к хрусталику, облегчая при этом фокусировку. Благодаря содружественному действию глазодвигательных мышц движения обоих глаз согласованны.

Световые лучи, прежде чем попасть на сетчатку, проходят через несколько преломляющих поверхностей: переднюю и заднюю поверхности роговицы, хрусталик и стекловидное тело.

Ясное, четкое видение разноудаленных предметов обеспечивается, благодаря изменению кривизны хрусталика, а значит и его оптической силы, с помощью сокращения или расслабления особой цилиарной (кольцевой или ресничной) мышцы, находящейся вокруг хрусталика. Эта мышца и меняет выпуклость самого хрусталика. Описанный схематично процесс называется аккомодацией.

Определенное состояние аккомодации всегда стремится вызвать и определенную степень сведения зрительных осей (конвергенции) при рассматривании близких предметов и определенную степень разведения зрительных осей (дивергенции) при рассматривании удаленных предметов. При этом и тот, и другой процесс происходит одновременно двумя глазами.

Кроме того, важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. Зрительное ощущение при неподвижных глазах и объектах исчезает через 1 – 2с. Если на глаз поставить присоску с крохотным источником света, то человек видит его только к момент включения или выключения, так как этот раздражитель движется вместе с глазом и, следовательно, неподвижен по отношению к сетчатке. Чтобы преодолеть такое приспособление (адаптацию) к неподвижному изображению, глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные и непроизвольные микро движения (сканирующий аппарат) трех видов. Тремор – мелкие, но очень частые быстрые колебания (дрожание) глазного яблока вокруг точки фиксации, сопровождают дрейф. Дрейф – медленное, плавное соскальзывание взора на десятые доли градуса (дрейфуют – медленно смещаются с точки фиксации взора), участвует в процессе удержания изображения в оптимальной зоне сетчатки, препятствует исчезновению восприятия объекта (направление дрейфа случайно) и саккады – микросаккады – быстрые перемещения взгляда в пределах одного градуса, восстанавливают заданное направление взора. Продолжительность каждого скачка равна сотым долям секунды. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы «прослеживают» контуры изображения (Рис. 5), задерживаясь на наиболее информативных его участках (например, в лице это – глаза). Микросаккады, возникающие с определенным интервалом до нескольких секунд, как и дрейф, препятствуют развитию локальной адаптации, приводящей к возникновению «пустого поля». Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на другие, вновь передовая информацию в зрительный (оптический) нерв.

Рис. 5. Микросаккады – движения глаз при осматривании объекта.

Частота вибрации нормального глаза в среднем –70 раз в секунду. Установлено, что глаза Лорда Макаули (Macaulay) перемещались с частотой 10000 раз секунду, что позволяло ему читать, корректировать и запоминать до 500 слов в секунду. Это значит, что, перелистывая страницы, он успевал с той же скоростью прочитать в них каждое слово. Эти феноменальные результаты достигаются через такое развитие зрения, которое позволяет глазам перемещаться без каких-либо препятствий с максимально возможной скоростью.

Кроме непроизвольных движений, существуют движения, связанные с процессом наведения взора на объект, настройки глаза «на фокус».

Из макродвижений, связанных с изменением местоположения глаз в орбите – это макросаккады – отражают обычно произвольные быстрые и точные смешения взора с одной точки на другую (амплитуда его не превышает 20 угловых градусов) и прослеживающие движения глаз – плавные движения глаз при отслеживании перемещающегося объекта в поле зрения так называемый «перевод взгляда». Амплитуда прослеживающих движений ограничивается пределами моторного поля глаза (около 60 угловых градусов по горизонтали и около 40 угловых градусов по вертикали). В основном, прослеживающие движение глаз носят непроизвольный характер, начинаются через 0,02с после начала движения объекта и продолжаются в течение 0,03 – 0,1 сек. после его остановки, так называемое «Время инерции зрения». На этом свойстве зрения основано кино и телевидение: человек не видит промежутков между отдельными кадрами (24 кадра за одну секунду в кино), так как зрительное ощущение от одного кадра еще длится до появления следующего. Это и обеспечивает иллюзию непрерывности изображения и его движения.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.