Рудольф Сворень - Шаг за шагом. От детекторного приемника до супергетеродина Страница 27
Рудольф Сворень - Шаг за шагом. От детекторного приемника до супергетеродина читать онлайн бесплатно
В другом конце диапазона будет наблюдаться обратная картина: ротор еще полностью не введен и стрелка указывает на частоту 200 кгц, а контур уже настроен на самую низкую из нужных нам частот — 150 кгц. Если мы будем и дальше увеличивать емкость контура, вводя ротор конденсатора, то будем настраивать контур на еще более низкие частоты 140, 130… 100 кгц, где радиовещательные станции, как уже отмечалось, не работают.
Можно ли избавиться от всех этих недостатков? Можно, и сравнительно просто.
Давайте вновь передвинем стрелку на деление «200 кгц» и таким образом настроимся на станцию, работающую на частоте 150 кгц. Теперь попробуем, постепенно вывинчивая сердечник из контурной катушки, уменьшать ее индуктивность. Вы, конечно, не забыли, что резонансная частота контура в одинаковой степени зависит от его индуктивности и емкости. Если мы уменьшаем индуктивность и хотим сохранить настройку на станцию, то нам придется увеличивать емкость контура, то есть вводить ротор конденсатора настройки. При этом, естественно, стрелка будет перемещаться в сторону более длинных волн, все ближе к частоте 150 кгц, на которой и работает наша станция. Уменьшать индуктивность контура нужно до тех пор, пока точная настройка на станцию не будет соответствовать нужному положению стрелки на шкале.
Устанавливая нужные нам границы резонансной частоты контура, можно пользоваться и подстроечным конденсатором, так как общая емкость контура равна сумме емкостей конденсаторов настройки и подстроечного. Действительно, если мы будем уменьшать емкость подстроечного конденсатора, то, для того чтобы сохранить резонансную частоту неизменной, нам придется увеличивать емкость конденсатора настройки, то есть вводить его ротор. А это значит, что стрелка будет перемещаться по шкале в нужном направлении — в сторону более длинных волн.
Настраивая входной контур детекторного приемника, следует помнить общее для настройки всех контуров правило: при выведенном роторе резонансную частоту контура подгоняют с помощью подстроенного конденсатора, а при введенном роторе — путем изменения индуктивности катушки (рис. 57, 58, лист 99).
Начинать удобнее с длинноволнового участка диапазона (ротор введен, подбирается индуктивность), после этого следует перейти к подгонке частоты на коротковат новом участке (ротор выведен, подбирается емкость подстроечного конденсатора), затем желательно вернуться обратно на длинноволновый участок и в заключение еще раз произвести подстройку на коротковолновом участке. Конечно, в детекторном приемнике почти никогда нет возможности выполнить всю эту программу из-за весьма ограниченного числа принимаемых станций. Поэтому в таком приемнике желательно лишь приближенно подобрать индуктивность катушек. Более точную подстройку контуров мы произведем в ламповых приемниках, где изготовленные нами катушки будут использованы без изменений. Следует помнить, что во время настройки приемника антенну уже нельзя подключать непосредственно к контуру, так как собственная емкость антенны может сильно его расстроить.
Собрав и наладив двухдиапазонный детекторный приемник, вы испытаете огромное, ни с чем не сравнимое удовлетворение. При наличии хорошей наружной антенны вечером, а особенно ночью, когда условия распространения длинных и средних волн улучшаются, вы наверное сможете принять несколько сравнительно дальних станций. Настраиваясь то на одну, то на другую станцию, вы практически почувствуете, какая замечательная вещь колебательный контур.
Но первые же эксперименты с детекторным приемником покажут вам, что с помощью одного колебательного контура многого не добьешься: приемник работает тихо, число принимаемых станций невелико, сигналы мешающих станций зачастую ослабляются явно недостаточно.
На первый взгляд может показаться, что, применив в детекторном приемнике несколько одинаковых колебательных контуров, можно улучшить его избирательность и чувствительность. Что касается избирательности, то это действительно так: если в приемнике имеется два контура, каждый из которых ослабляет мешающую станцию в три раза, то общая избирательность будет равна девяти. Увеличение числа контуров — это один из основных путей повышения избирательности. Что же касается повышения чувствительности, то здесь увеличение числа контуров не дает эффекта.
Если в детекторном приемнике будет два контура, то энергия, поступающая из антенны, распределится между ними, и поэтому ток в каждом из контуров будет меньше, чем у одноконтурного приемника. И, к какому из этих двух контуров мы ни подключали бы детектор, мы не только не улучшим, но даже ухудшим чувствительность по сравнению с одноконтурным приемником.
Для того чтобы обеспечить громкоговорящий прием большого числа радиостанций, необходимо в миллионы и миллиарды раз повысить мощность принятого сигнала, подводимого к антенне. Такое огромное усиление мощности позволяет получить полупроводниковые триоды и электронные лампы, с работой которых мы познакомимся в следующей главе.
Глава 4
ВОЛШЕБНАЯ ЛАМПА
С помощью колебательного контура нам удалось несколько повысить чувствительность приемника — контур помог наилучшим образом использовать энергию, которую принесли к антенне радиоволны.
Но мощность сигналов, действующих в антенне, обычно настолько мала, что все «усилия» колебательного контура оказываются совершенно недостаточными для того, чтобы получить громкоговорящий прием. Приходится искать принципиально новый путь для повышения громкости приема: применять электронные лампы или транзисторы — полупроводниковые триоды, с помощью которых можно во много раз усиливать мощность принимаемых сигналов.
Во многих книгах электронную лампу называют волшебной. И это не преувеличение — лампа действительно способна делать чудеса: подводим к лампе слабый электрический сигнал, а из лампы этот сигнал выходит усиленным в тысячи раз. Ну чем не чудеса! Однако все мы отлично знаем, что чудес не бывает ни в цирке, ни в технике, и поэтому попробуем разобраться, как работают «волшебные» усилительные приборы: электронная лампа и ее ближайший помощник — полупроводниковый триод.
Начнем с того, что если говорить строго, то ни лампа, ни полупроводниковый триод электрических сигналов не усиливают и усиливать не могут: слабый электрический сигнал, который мы подводим к лампе, так и остается слабым сигналом. То, что происходит в ламповом или полупроводниковом усилителе, напоминает процесс изготовления больших фотографий с негатива малых размеров. С помощью фотоувеличителя, затратив определенную световую энергию, мы на большом листе фотобумаги создаем новое изображение — увеличенную копию маленького негатива, который здесь играет лишь роль образца.
Усилительные приборы, к числу которых и относятся лампа и транзистор, в процессе усиления сигналов играют примерно ту же роль, что и увеличитель при изготовлении фотографий. С помощью лампы или транзистора слабый электрический сигнал управляет движением зарядов — током мощного источника электрической энергии — подобно тому как с помощью рулевого механизма пилот управляет движением тяжелого многомоторного самолета. И так же, как самолет следует за всеми поворотами рулей, так и электрический ток на выходе усилительного прибора следует за всеми изменениями управляющего (усиливаемого) сигнала. Создание «мощной копии» равносильно усилению слабого сигнала, и поэтому-то полупроводниковый триод и электронную лампу называют их управляющими приборами.
В этой главе мы познакомимся с принципами работы электронной лампы, с основными типами ламп и схемами их включения. Эго позволит нам в дальнейшем рассмотреть практические схемы усилителей высокой и низкой частоты, которые могут быть использованы в радиоприемнике.
Обычно в учебниках радиотехники сначала рассматривается устройство и работа лампы, а затем уже рассказывается, как работает транзистор. Мы же поступим наоборот — начнем с полупроводникового триода, так как знакомство с принципом его работы позволит нам легче понять, как работает электронная лампа.
ДИОД + ДИОД = ТРИОД?Мы уже знакомились с устройством полупроводникового диода. В нем есть две примыкающие друг к другу зоны полупроводникового материала: зона со свободными положительными зарядами (зона р) и зона со свободными электронами (зона n). Область между этими зонами называется рn-переходом.
В полупроводниковом триоде также имеются зоны с различной проводимостью, но не две зоны, как в диоде, а три. Из нескольких типов выпускаемых в настоящее время транзисторов наиболее широкое распространение получили плоскостные германиевые транзисторы типа р-n-р. Основой такого транзистора является кристалл германия, в котором имеется некоторое количество свободных электронов (зона n). В двух местах в этот кристалл вкраплены мельчайшие кусочки металла индия (лист 100). В местах соприкосновения с индием в кристалле германия появляется некоторое количество свободных положительных зарядов. Таким образом, в полупроводниковом триоде по краям зоны n образуются две зоны р, а значит, и два рn-перехода, и поэтому полупроводниковый триод типа р-n-р можно рассматривать как два плоскостных диода с общей зоной n. В плоскостных диодах, так же как и в транзисторах, рn-переход создается путем вкрапления индия в германий.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.