П Успенский - Новая Модель Вселенной Страница 23

Тут можно читать бесплатно П Успенский - Новая Модель Вселенной. Жанр: Научные и научно-популярные книги / Религиоведение, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

П Успенский - Новая Модель Вселенной читать онлайн бесплатно

П Успенский - Новая Модель Вселенной - читать книгу онлайн бесплатно, автор П Успенский

Хинтон делает несколько попыток определить четвертое измерение и со стороны физики, и со стороны психологии. Изрядное место в его книгах занимает описание метода предложенного им приучения сознания к постижению четвертого измерения. Это длинный ряд упражнений аппарата восприятий и представлений с сериями разноцветных кубов, которые нужно запомнить сначала в одном положении, потом в другом, в третьем и затем представлять себе в различных комбинациях.

Основная идея Хинтона, которой он руководствовался при разработке своего метода, заключается в том, что для пробуждения «высшего сознания» необходимо «уничтожить себя» в представлении и познании мира, т.е. приучиться познавать и представлять себе мир не с личной точки зрения (как это обычно бывает), а таким, каков он есть. При этом прежде всего надо научиться представлять вещи не такими, какими они кажутся, а такими, какие они есть, хотя бы просто в геометрическом смысле; после чего появится и способность познавать их, т.е. видеть такими, каковы они есть, а также и с других точек зрения, кроме геометрической.

первое упражнение, приводимое Хинтоном: изучение куба, состоящего из 27 меньших кубиков, которые окрашены в разные цвета и имеют определенные названия. Твердо изучив куб, составленный из кубиков, нужно перевернуть его и изучить (т.е. постараться запомнить) в обратном порядке. Потом опять перевернуть кубики и запомнить в этом порядке и т.д. В результате, как говорит Хинтон, удается в изучаемом кубе совершенно уничтожить понятия: верх и низ, справа и слева м пр., и знать его независимо от взаимного расположения составляющих его кубиков, т.е., вероятно, представлять одновременно в различных комбинациях. Таков первый шаг в уничтожении субъективного элемента в представлении о кубе. Дальше описывается целая система упражнений с сериями разноцветных и имеющих разные названия кубиков, из которых составляются всевозможные фигуры все с той же целью уничтожить субъективный элемент в представлении и таким образом развить высшее сознание. Уничтожение субъективного элемента, по мысли Хинтона, – первый шаг на пути развития высшего сознания и постижения четвертого измерения.

Хинтон утверждает, что если существует способность видеть в четвертом измерении, если можно видеть предметы нашего мира из четвертого измерения, то мы увидим их совсем иначе, не так, как обычно.

Обычно мы видим предметы сверху или снизу от нас, или на одном уровне с нами, справа, слева, сзади от нас, или перед нами, всегда с одной стороны, обращенной к нам, и в перспективе. Наш глаз – крайне несовершенный аппарат: он дает нам в высшей степени неправильную картину мира. То, что мы называем перспективой, есть, в сущности, искажение видимых предметов, производимое плохо устроенным оптическим аппаратом – глазом. Мы видим предметы искаженными и точно также представляем себе их. Но все это – исключительно в силу привычки видеть их искаженными, т.е. вследствие привычки, вызванной нашим дефектным зрением, ослабившим и нашу способность представления.

Но, согласно Хинтону, у нас нет никакой необходимости представлять себе предметы внешнего мира непременно искаженными. Способность представления вовсе не ограничивается способностью зрения. Мы видим предметы искаженными, но знаем их такими, каковы они есть. Мы можем избавиться от привычки представлять предметы такими, каковы они нам видятся, и научиться представлять их себе такими, каковы они, как мы знаем, есть. Идея Хинтона и заключается в том, что, прежде чем думать о развитии способности зрения в четвертом измерении, нужно выучиться представлять себе предметы так, как они были бы видны из четвертого измерения, т.е. не в перспективе, а со всех сторон сразу, как знает их наше «сознание». Именно эту способность и развивают упражнения Хинтона. Развитие способности представлять себе предметы сразу со всех сторон уничтожает в представлениях субъективный элемент. Согласно Хинтону, «уничтожение субъективного элемента в представлениях приводит к уничтожению субъективного элемента в восприятии». Таким образом, развитие способности представлять себе предметы со всех сторон – первый шаг к развитию способности видеть предметы такими, каковы они есть в геометрическом смысле, т.е. к развитию того, что Хинтон называет «высшим сознанием».

Во всем этом есть много верного, но много и надуманного, искусственного. Во-первых, Хинтон не принимает во внимание различий между разными психическими типами людей. Метод, удовлетворительный для него самого, может не дать никаких результатов или даже вызвать отрицательные последствия у других людей. Во-вторых, сама психологическая основа системы Хинтона слишком ненадежна. Обычно, он не знает, где нужно остановиться, его аналогии заводят слишком далеко, лишая тем самым многие из его заключений какой бы то ни было ценности.

* * *

С точки зрения геометрии вопрос о четвертом измерении можно рассматривать по Хинтону следующим образом.

Нам известны геометрические фигуры трех родов:

одного измерения – линии, двух измерений – плоскости, трех измерений – тела.

При этом, линию мы рассматриваем, как след от движения точки в пространстве, плоскость – как след от движения линии в пространстве, тело – как след от движения плоскости в пространстве.

Представим себе отрезок прямой, ограниченный двумя точками, и обозначим его буквой a. Допустим, этот отрезок движется в пространстве в направлении, перпендикулярном к себе самому, и оставляет за собой след. Когда он пройдет расстояние, равное своей длине, его след будет иметь вид квадрата, стороны которого равны отрезку a, т.е. a2.

Пусть этот квадрат движется в пространстве в направлении, перпендикулярном к двум смежным сторонам квадрата, и оставляет за собой след. Когда он пройдет расстояние, равное длине стороны квадрата, его след будет иметь вид куба, a3.

Теперь, если мы предположим движение куба в пространстве, то какой вид будет иметь его след, т.е. фигура a4?

Рассматривая отношения фигур одного, двух и трех измерений, т.е. линий, плоскостей и тел, можно вывести правило, что каждая фигура следующего измерения является следом от движения фигуры предыдущего измерения. На основании этого правила можно рассматривать фигуру a4 как след от движения куба в пространстве.

Но что же это за движение куба в пространстве, след которого оказывается фигурой четырех измерений? Если мы рассмотрим, каким образом движение фигуры низшего измерения создает фигуру высшего измерения, – то мы обнаружим несколько общих свойств, общих закономерностей.

Именно, когда мы рассматриваем квадрат как след от движения линии, нам известно, нам известно, что в пространстве двигались все точки линии; когда мы рассматриваем куб как след от движения квадрата, то нам известно, что двигались все точки квадрата. При этом линия движется в направлении, перпендикулярном к себе; квадрат – в направлении, перпендикулярном к двум своим измерениям.

Следовательно, если мы рассматриваем фигуру a4 как след от движения куба в пространстве, то мы должны помнить, что в пространстве двигались все точки куба. При этом по аналогии с предыдущим можно заключить, что куб двигался в пространстве в направлении, в нем самом не заключающемуся, т.е. в направлении, перпендикулярном к трем его измерениям. Это направление и есть тот четвертый перпендикуляр, которого нет в нашем пространстве и в нашей геометрии трех измерений.

Затем линию можно рассматривать как бесконечное число точек; квадрат – как бесконечное число линий; куб – как бесконечное число квадратов. Аналогичным образом фигуру a4 можно рассматривать как бесконечное число кубов. Далее, глядя на квадрат, мы видим одни линии; глядя на куб – его поверхности или даже одну из этих поверхностей.

Надо полагать, что фигура a4 будет представляться нам в виде куба. Иначе говоря, куб есть то, что мы видим, глядя на фигуру a4. Далее, точку можно определить как сечение линии; линию – как сечение плоскости; плоскость – как сечение объема; точно так же трехмерное тело можно определить как сечение четырехмерного тела. Вообще говоря, глядя на четырехмерное тело, мы увидим его трехмерную проекцию, или сечение. Куб, шар, конус, пирамида, цилиндр – могут оказаться проекциями, или сечениями, каких-то неизвестных нам четырехмерных тел.

* * *

В 1908 году я наткнулся на любопытную статью о четвертом измерении на русском языке, напечатанную в журнале «Современный мир».

Это было письмо, написанное в 1891 году Н.А. Морозовым* товарищам по заключению в Шлиссельбургской крепости. Оно интересно, в основном, тем, что в нем очень образно изложены главные положения того метода рассуждений о четвертом измерении посредством аналогий, который был упомянут ранее.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.