Эдмунд Цихош - Сверхзвуковые самолеты Страница 20
Эдмунд Цихош - Сверхзвуковые самолеты читать онлайн бесплатно
Как следует из данных, содержащихся в табл. 1, в 37 самолетах для поперечного управления использованы элероны; в 7-элероны и интерцепторы; в 3-элероны и дифференциальный управляемый стабилизатор; в 8-интерцепторы и дифференциальный управляемый стабилизатор; в 5-только дифференциальный управляемый стабилизатор; в 19-элевоны; в 6-элероны и рули высоты в хвостовой части крыла; в 1-зависающие элероны и дифференциальный управляемый стабилизатор и в 2-только интерцепторы. Для управления по тангажу и курсу в 6 самолетах использовано классическое горизонтальное оперение, состоящее из неподвижного стабилизатора и руля высоты; в 56-полностью поворотное горизонтальное оперение, в том числе в 17-дифференциальное (всего создано 62 самолета классической схемы); в 75-классическое одно- килевое оперение; в 6-двухкилевое оперение; в 5-полностью поворотное одно килевое и в 2-поворотное двухкилевое.
Приведенные данные показывают, что проблема управления самолетами разрешалась разными способами в зависимости от принятой общей концепции самолета, развития аэродинамики и имеющегося опыта. В то же время возможности использования различных методов в целях получения требуемой устойчивости весьма ограничены. Помимо соответствующего взаимного расположения несущих поверхностей различной формы и площади, улучшения продольной устойчивости можно добиться только путем регулирования положения центра тяжести самолета посредством перекачки топлива из передней части фюзеляжа к хвостовой (либо наоборот), а улучшения устойчивости по курсу- посредством применения подфюзеляжных килей и аэродинамических направляющих.
Топливная система, позволяющая изменять балансировку самолета в полете, использована в 4 самолетах, а подфюзе- ляжные кили-в 26 (в том числе: в 15-одиночные, в 10-сдвоенные и в 1-строенные).
Проблема малой маневренности первых сверхзвуковых самолетов как следствия недостаточной эффективности продольного управления с помощью руля высоты была разрешена путем использования цельнопо- воротного горизонтального оперения (управляемого стабилизатора). Такое оперение выполняется в виде моноблочной конструкции, поворачиваемой относительно поперечной оси и выполняющей функции как руля, так и стабилизатора. Оно не теряет эффективности при сверхзвуковом обтекании, поскольку не подвержено аэродинамической блокировке. Конструкция существенно упрощается в связи с возможностью избежать разделения горизонтального оперения на неподвижную и поворотную части, исключить шарнирные соединения и элементы управления рулем, весовую балансировку руля и т.п. Цельноповоротное оперение позволяет применять весьма тонкий профиль, что также положительно влияет на аэродинамические характеристики.
Достоинства цельноповоротного горизонтального оперения имеют двоякий характер. Во-первых, оперение этого типа значительно более эффективно в диапазоне около- и сверхзвуковых скоростей, что позволяет расширить возможности использования несущих свойств крыла для увеличения грузоподъемности. Во-вторых, более высокая эффективность цельноповоротного оперения позволяет создавать в полетах со сверхкритическими скоростями большие перегрузки, что существенно увеличивает маневренность самолетов с таким оперением в сравнении с самолетами, имеющими обычный руль высоты. Часто поворотный стабилизатор выполняется в виде двух плоскостей (левой и правой), что дает возможность как согласованного, так и дифференциального их отклонения. Эффективность такого оперения может быть дополнительно повышена применением закрылков со сдувом пограничного слоя (TSR.2) или созданием уступа передней кромки (F-15).
Упомянутое выше явление скоса потока вблизи горизонтального оперения, расположенного за крылом, может при их неблагоприятном взаимном расположении привести к отрицательным последствиям как при дозвуковых, так и при сверхзвуковых скоростях. В последнем случае наибольшее изменение скоса потока происходит на фронте косых скачков у задней кромки крыла. При полете на больших высотах ввиду значительных углов атаки этот фронт в районе оперения находится высоко над продольной осью самолета. В связи с этим при среднем или верхнем расположении горизонтального оперения (как это сделано на многих околозвуковых самолетах, с тем чтобы вынести оперение из области возмущений, индуцированных крылом) на сверхзвуковом режиме полета оперение может оказаться в зоне наибольшего скоса потока. Это, очевидно, может стать причиной возникновения неустойчивости, поэтому на большинстве сверхзвуковых самолетов классической схемы горизонтальное оперение размещено в нижней части фюзеляжа. В таком случае горизонтальное оперение находится вне области возмущений, а скос потока за крылом при сверхзвуковых скоростях бывает наименьшим.
Исключение составляют самолеты с очень короткими хвостовыми частями фюзеляжа (SR.53 и «Жерфо»), а также самолеты с прямыми крыльями малого удлинения (F-104 и Т. 188), в которых применено Т-образное хвостовое оперение. Поскольку расположение оперения влияет также и на возникновение вибраций типа бафтинга, то оно для каждого конкретного случая определяется путем исследований моделей в аэродинамической трубе и испытаний самолета в полете.
Как уже упоминалось, при переходе от дозвуковой скорости полета к сверхзвуковой происходит увеличение момента на пикирование, для компенсации которого в самолете классической схемы при передней центровке необходимо создание на горизонтальном оперении направленной вниз силы, увеличивающей момент балансировки. Однако это приводит к уменьшению аэродинамического качества и в конечном счете к сокращению на 10-20% радиуса действия самолета. Обеспечение устойчивости самолета такой ценой, естественно, неприемлемо.
Помимо описанных выше способов изменения положения (перемещения вперед) центра давления самолета путем размещения в передней части фюзеляжа дестабилизирующих плоскостей (т.е. путем использования схемы, близкой к схеме «утка»), а также с помощью крыла оживальной формы (эта проблема освещена в главе, посвященной пассажирским самолетам), практическое применение нашел также метод изменения положения центра тяжести самолета в полете посредством перекачки топлива. Для реализации этого метода потребовалось разработать специальные автоматические устройства, определяющие и изменяющие положение ц. т. самолета при изменении его ц.д., а также использовать топливные насосы большой производительности, трубопроводы и балансировочные баки в передней и хвостовой частях фюзеляжа. Этот метод обеспечения почти постоянного запаса статической продольной устойчивости при дозвуковых и сверхзвуковых скоростях полета нашел применение в самолетах среднего радиуса действия. Исследования влияния величины аэродинамического качества на увеличение радиуса действия подтвердили целесообразность применения такой системы, несмотря на соответствующее усложнение и утяжеление конструкции. Перекачка топлива применяется как в боевых (В-58 и «Мираж» IVА), так и в пассажирских (Ту-144 и «Конкорд») самолетах. Особые трудности вызывает при этом необходимость обеспечения соответствующей поперечной устойчивости и управляемости при сверхзвуковых скоростях полета и больших углах атаки, поскольку при перекачке топлива происходят изменения аэродинамических, инерционных и жесткостных характеристик самолета. В полете с около- и сверхкритическими скоростями может произойти аэродинамическая блокировка элеронов, поэтому поперечное управление самолетом при таких скоростях обычно затруднено. Уменьшение относительной толщины профиля крыла и оперения, рекомендованное вначале для уменьшения волнового сопротивления, оказалось полезным также и для улучшения управляемости, однако проблема этим путем решается лишь частично.
Рис. 1.31. «Игл» F-15 с управляемым дифференциальным стабилизатором, имеющим геометрический уступ передней кромки.
Рис. 1.32. Элементы аэродинамической системы управления самолета «Виджилент» А-5. 1 -носовые щитки с устройствами сдува пограничного слоя с носка крыла; 2-закрылки со сдувом пограничного слоя; 3-цельноповоротный киль; 4 -управляемый дифференциальный стабилизатор; 5-трехсек- ционные интерцепторы.
Дополнительные нарушения работы элеронов (помимо влияния сжимаемости воздуха) вызывает стреловидность передней кромки крыла. Отрыв пограничного слоя в средней и концевой частях стреловидного крыла приводит к снижению эффективности находящегося там элерона, в связи с чем нередко последние располагают вблизи фюзеляжа. Прифюзеляжными элеронами оснащены, в частности, самолеты F-100 и F-8. Дополнительное достоинство таких элеронов-меньшая подверженность явлению реверса, а недостаток-уменьшение плеча действия силы, т. е. управляющего момента. Для компенсации уменьшения плеча таких элеронов приходится увеличивать их площадь.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.