Ольга Косарева - Шпаргалка по общей электронике и электротехнике Страница 3

Тут можно читать бесплатно Ольга Косарева - Шпаргалка по общей электронике и электротехнике. Жанр: Научные и научно-популярные книги / Техническая литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Ольга Косарева - Шпаргалка по общей электронике и электротехнике читать онлайн бесплатно

Ольга Косарева - Шпаргалка по общей электронике и электротехнике - читать книгу онлайн бесплатно, автор Ольга Косарева

Электроны, расположенные ближе к ядру атома, обладают меньшими энергиями, т. е. находятся на более низких энергетических уровнях. Чтобы удалить электрон от ядра, надо преодолеть взаимное притяжение между электроном и ядром. Для этого надо затратить некоторую энергию. Поэтому удаленные от ядра электроны обладают большими энергиями; они находятся на более высоких энергетических уровнях.

Когда электрон переходит с более высокого энергетического уровня на более низкий, выделяется определенное количество энергии, называемое квантом (или фотоном). Если атом поглощает один квант энергии, то электрон переходит с более низкого энергетического уровня на более высокий. Таким образом, энергия электронов изменяется только квантами, т. е. определенными порциями.

Распределение электронов по уровням энергии изображают схематически: по вертикали откладывают энергию Wэлектрона, а горизонтальными линиями показывают уровни энергии.

В соответствии с так называемой зоной теорией твердого тела энергетические уровни объединяются в отдельные зоны. Электроны внешней оболочки атома заполняют ряд энергетических уровней, составляющих валентную зону. Более низкие энергетические уровни входят в состав других зон, заполненных электронами, но эти зоны не играют роли в явлениях электропроводности и поэтому они не изображаются на рисунке. В металлах и полупроводниках существует большое количество электронов, находящихся на I более высоких энергетических уровнях. Эти уровни составляют зону проводимости. Электроны этой зоны, называемые электронами проводимости, совершают беспорядочное движение внутри тела, переходя от одних атомов к другим. Именно электроны проводимости обеспечивают высокую электропроводность металлов.

Атомы вещества, отдавшие электроны в зону проводимости, можно рассматривать как положительные ионы. Они располагаются в определенном порядке, образуя пространственную решетку, называемую иначе ионной, или кристаллической. Состояние этой решетки соответствует равновесию сил взаимодействия между атомами и минимальному значению общей энергии всех частиц тела. Внутри пространственной решетки происходит беспорядочное движение электронов проводимости.

Иная энергетическая структура характерна для диэлектриков. У них между зоной проводимости и валентной зоной существует запрещенная зона, соответствующая уровням энергии, на которых электроны не могут быть.

При нормальной температуре у диэлектриков в зоне проводимости имеется только очень небольшое количество электронов и поэтому диэлектрик обладает ничтожно малой проводимостью. Но при нагревании некоторые электроны валентной зоны, получая добавочную энергию, переходят в зону проводимости, и тогда диэлектрик приобретает заметную электропроводность.

Полупроводники при низких температурах являются диэлектриками, а при нормальной температуре значительное количество электронов переходит из валентной зоны в зону проводимости.

В настоящее время для изготовления полупроводниковых приборов наиболее широко используют германий и кремний, имеющие валентность, равную 4. Пространственная кристаллическая решетка германия или кремния состоит из атомов, связанных друг с другом валентными электронами. Такая связь называется ковалентной или парноэлектронной.

7. СОБСТВЕННАЯ ЭЛЕКТРОННАЯ И ДЫРОЧНАЯ ЭЛЕКТРОПРОВОДИМОСТИ

Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости занимают среднее место между проводниками и диэлектриками.

Для полупроводников характерен отрицательный температурный коэффициент электрического сопротивления. При возрастании температуры сопротивление полупроводников уменьшается, а не увеличивается, как у большинства твердых проводников. Кроме того, электрическое сопротивление полупроводников очень сильно зависит от количества примесей, а также от таких внешних воздействий, как свет, электрическое поле, ионизирующее излучение и др.

В полупроводниках существует электропроводность двух видов. Так же как и металлы, полупроводники обладают электронной электропроводностью, которая обусловлена перемещением электронов проводимости. При обычных рабочих температурах в полупроводниках всегда имеются электроны проводимости, которые очень слабо связаны с ядрами атомов и совершают беспорядочное тепловое движение между атомами кристаллической решетки. Эти электроны под действием разности потенциалов могут получить дополнительное движение в определенном направлении, которое и является электрическим током.

Полупроводники обладают также дырочной электропроводностью, которая не наблюдается в металлах. В полупроводниках кристаллическая решетка достаточно прочна. Ее ионы, т. е. атомы, лишенные одного электрона, не передвигаются, а остаются на своих местах.

Отсутствие электрона в атоме условно назвали дыркой. Этим подчеркивают, что в атоме не хватает одного электрона, т. е. образовалось свободное место. Дырки ведут себя как элементарные положительные заряды.

При дырочной электропроводности в действительности тоже перемещаются электроны, но более ограниченно, чем при электронной электропроводности. Электроны переходят из данных атомов только в соседние. Результатом этого является перемещение положительных зарядов – дырок – в направлении, противоположном движению электронов.

Электроны и дырки, которые могут перемещаться и поэтому создавать электропроводность, называют подвижными носителями заряда или просто носителями заряда. Принято говорить, что под действием теплоты происходит генерация пар носителей заряда, т. е. возникают пары: электрон проводимости – дырка проводимости.

Вследствие того что электроны и дырки проводимости совершают хаотическое тепловое движение, обязательно происходит и процесс, обратный генерации пар носителей. Электроны проводимости снова занимают свободные места в валентной зоне, т. е. объединяются с дырками. Такое исчезновение пар носителей называется рекомбинацией носителей заряда. Процессы генерации и рекомбинации пар носителей всегда происходят одновременно.

Полупроводник без примесей называют собственным полупроводником. Он обладает собственной электропроводностью, которая складывается из электронной и дырочной электропроводности. При этом, несмотря на то что количество электронов и дырок проводимости в собственном полупроводнике одинаково, электронная электропроводность преобладает, что объясняется большей подвижностью электронов по сравнению с подвижностью дырок.

8. ПРИМЕСНАЯ ЭЛЕКТРОПРОВОДНОСТЬ

Если в полупроводнике имеются примеси других веществ, то дополнительно к собственной электропроводности появляется еще примесная электропроводность, которая в зависимости от рода примеси может быть электронной или дырочной. Например, германий, будучи четырехвалентным, обладает примесной электронной электропроводностью, если к нему добавлены пятивалентные сурьма и мышьяк. Их атомы взаимодействуют с атомами германия только четырьмя своими электронами, а пятый электрон отдают в зону проводимости. В результате получается некоторое количество дополнительных электронов проводимости. Примеси, у которых атомы отдают электроны, называют донорами. Атомы доноров, теряя электроны, сами заряжаются положительно.

Полупроводники с преобладанием электронной электропроводности называют электронными полупроводниками или полупроводниками п-типа.

Вещества, отбирающие электроны и создающие примесную дырочную электропроводность, называют акцепторами. Атомы акцепторов, захватывая электроны, сами заряжаются отрицательно.

Полупроводники с преобладанием дырочной электропроводности называют дырочными полупроводниками или полупроводниками р-типа.

В полупроводниковых приборах используются главным образом полупроводники, содержащие донорные или акцепторные примеси и называемые примесными. При обычных рабочих температурах в таких полупроводниках все атомы примеси участвуют в создании примесной электропроводности, т. е. каждый атом примеси либо отдает, либо захватывает один электрон.

Чтобы примесная электропроводность преобладала над собственной, концентрация атомов донорной примеси или акцепторной примеси должна превышать концентрацию собственных носителей заряда.

Носители заряда, концентрация которых в данном полупроводнике преобладает, называются основными. Ими являются электроны в полупроводнике п-типа и дырки в полупроводнике р-типа. Неосновными называют носители заряда, концентрация которых меньше, чем концентрация основных носителей. Концентрация неосновных носителей в примесном полупроводнике уменьшается во столько раз, во сколько увеличивается концентрация основных носителей.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.