Майкл ДиМеркурио - Подводные лодки Страница 42

Тут можно читать бесплатно Майкл ДиМеркурио - Подводные лодки. Жанр: Научные и научно-популярные книги / Техническая литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Майкл ДиМеркурио - Подводные лодки читать онлайн бесплатно

Майкл ДиМеркурио - Подводные лодки - читать книгу онлайн бесплатно, автор Майкл ДиМеркурио

Сколько миль может проработать реактор? Некоторые реакторы являются одноразовыми и могут служить до 70 лет. Топливо в реакторе не закончится, пока судно не утилизируют. Но большинство реакторов на подлодках ВМС США нужно «заправлять» топливом каждые 8–10 лет. Жизнь реактора измеряется в часах эффективной работы на полную мощность. Когда реактор только изготовлен, он находится в начале своей «карьеры». После того, как он проработал 10–15 лет в напряженном режиме, он считается «пожилым».

Например, реактор рассчитан на 12 000 часов эффективной работы на полную мощность, это означает, что он может проработать на 100 % мощности в течение 12 000 часов или на 50 % мощности в течение 24 000 часов или на 25 % мощности в течение 48 000 часов. Уровень мощности реактора замеряется каждые 10 минут, в том числе для того, чтобы рассчитать оставшийся рабочий ресурс. Для сведения, во время 50-дневного патрулирования вы можете израсходовать лишь 300 часов. Атомная подлодка редко расходует более 500–700 часов в год.

В приведённом выше примере реактор проработает 17 лет. Потребление такое низкое, потому что обычно во время патрулирования подлодки используют реактор на 25 %, когда они просто курсируют по морю, наблюдая за обстановкой в районе и «слушая» подлодки противника. Единственный случай, когда реактор используется на 50 % мощности, это когда подлодка быстро выходит из порта, чтобы передислоцироваться в другой район, обещающий более крупную «добычу».

«Пожилые» реакторы

Такие реакторы могут доставлять проблемы в тактической ситуации. Представьте себе, что двигатель автомобиля скорой помощи отказал в экстренной ситуации. Таким же образом «пожилой» реактор может не запуститься из-за наличия ксенона.

Его образование не предвещает ничего хорошего, потому что он единственный из всех продуктов распада урана поглощает нейтроны, которые нужны для того, чтобы реакция продолжалась. Кроме всего прочего, это ещё и газ. Когда уран распадается и образуется ксенон, природа этого газа заставляет топливные элементы образовывать наросты. Иногда они могут создавать помехи движению воды и становиться причиной локального расплавления топлива или отказа топливного элемента, что повышает уровень радиоактивности на борту подлодки.

Хорошая новость: при большой мощности ксенон «сгорает» под действием нейтронов и разлагается на безобидные элементы. Плохая новость для «пожилого» реактора: когда реактор приостановлен, высокий уровень ксенона не дает запустить его снова, потому что число реакций недостаточно для того, чтобы «сжечь» ксенон. Реактор может работать нормально, когда вы находитесь на пути в порт, даже может выдавать 100 % мощности, но потом команда приостанавливает его работу и переводит в режим «горячего ожидания». Через 10 часов поступает приказ об экстренном развертывании и преследовании противника от Главнокомандующего подлодками Атлантического флота.

Ничего у нас не выйдет: ксенон препятствует запуску реактора, Вы можете пытаться, но все, что вы сможете сделать, это поднять контрольные тяги из реактора, а уровень мощности останется в промежуточном режиме и не войдет в рабочий режим. Это похоже на двигатель, который тарахтит, но не заводится. Но подождите 24 часа, пока ксенон разложится сам собой, и реактор запустится с пол-оборота.

Так как уровень ксенона после приостановки работы реактора зависит от уровня мощности реактора до приостановки, то с «пожилыми» реакторами стараются обращаться аккуратно и поддерживать мощность на низком уровне за сутки до приостановки, даже если он будет использован на 18 % в течение 20 часов нахождения. В этом случае моряки-атомщики остаются в заднем отсеке подлодки и потеют, добавляя пара в систему, тогда как вымывшиеся «сонарные девочки» спускаются на пирс и отправляются за покупками.

Главнокомандующий подлодками Атлантического флота — адмирал флота и командующий подводным флотом восточного побережья. Подлодки докладывают адмиралу или командующему эскадрой в порту, но в море судно докладывает непосредственно Главнокомандующему подлодками Атлантического флота. Когда подлодка приписана к какому-либо боевому подразделению, она выходит из-под его командования и поступает в распоряжение командующего подразделением.

Горячий режим ожидания

Это состояние приостановленного реактора (все контрольные тяги на дне реактора, приводы тяг разблокированы, предохранители инвертора удалены и заблокированы). Один из основных насосов системы охлаждения включен, остальные выключены, а паровые генераторы доверху заполнены водой.

Температура охлаждающей жидкости реактора понизилась до 176,5–204,5 °C и реактор «впадает в спячку». Мощность реактора снижается до промежуточного режима (10–3 в минуту), потом он медленно входит в стартовый режим, а затем доходит до очень низкого «нейтронного» уровня. Горячий режим ожидания используется для приостановки реактора на несколько недель. В этом состоянии его легко снова запустить (за несколько часов или быстрее) в отличие от того, когда реактор подвергся холодной мокрой приостановке.

Холодная мокрая приостановка реактора

Это состояние, в котором находится приостановленный реактор, охлажденный до комнатной температуры (38 °C), необходимо, чтобы можно было произвести ремонтные работы. Реактор приводится в это состояние, когда подлодка заходит в док. Чтобы запустить реактор, вам может потребоваться много времени (20–30 часов), потому что активную зону реактора нужно разогревать медленно во избежание появления трещин. Трещины стенок реактора могут возникать, скорее, вследствие быстрого охлаждения из-за разрушения материала температурной волной. Это может случиться, когда температура достигнет примерно 176 °C, при более низкой температуре стенки реактора перестают быть упругими, они становятся ломкими.

Мы узнали о переходе материала из упругого состояние в ломкое во время Второй мировой войны, когда мы построили все эти суда Освобождения. Они имели тенденцию раскалываться пополам во время нахождения в холодной воде. Другой пример: когда вы используете блокиратор на руле вашего автомобиля, его легко сломать, если вор распылит на него жидкость при низкой температуре. Когда температура падает до –17 °C, металл легко разрушается от несильного удара по нему молотком, потому что он переходит из упругого состояния в ломкое.

Петли охлаждения

В реакторе есть две петли охлаждения, или два круга трубопроводов, которые идут от реактора (температура выходящей жидкости высока — 260 °C) к паровым генераторам (паровым котлам), дальше к рециркуляционным насосам реактора, а оттуда к входу в реактор.

Более опытные атомщики называют рециркуляционные насосы реактора ещё основными охлаждающими насосами. Они качают воду через реактор и паровые котлы. Для этого требуются тысячи лошадиных сил. Основной охлаждающий насос по размеру можно сравнить с тремя холодильниками, это самый большой электрический прибор на судне. Вот почему очень тяжело запустить реактор от аккумуляторов — основные охлаждающие насосы высосут всю энергию из аккумуляторов за очень короткое время.

С ростом мощности реактора насосы нужно переключать на более высокую скорость, чтобы обеспечить больший приток жидкости к реактору. До 50 % мощности насосы работают довольно тихо, но если из центра управления поступил приказ «полный вперёд», то насосы нужно переключать на высокую скорость.

Некоторые насосы могут работать на пониженной частоте, замедляясь до очень медленного темпа. Это очень помогает во время выслеживания противника при помощи сонара, потому что при этом снижается общий уровень шума подлодки.

Когда мы обсуждали сонарные сигналы, мы не упомянули, что самые большие проблемы при попытке сделать подлодку тише доставляют именно основные охлаждающие насосы.

В каждой петле имеется 3 насоса, всего их 6. Четыре работают постоянно. Когда насосы работают на малой скорости, то в каждой петле задействовано по два насоса, Иногда всего один насос может работать в каждой петле, например, во время запуска реактора. В это время мощность реактора строго ограничена, и необходимо запустить турбинный генератор, чтобы можно было запустить второй насос в каждой петле.

Разработка основных охлаждающих насосов была очень проблематичной, потому что, в отличие от русских систем, адмирал Риковер потребовал, чтобы они были спроектированы таким образом, чтобы исключить течь. На большинстве насосов установлены водяные замки, которые позволяют вращаться валу с водяным колесом. Но водяные замки не могут удержать всю воду, сочащуюся при повороте металлического вала. Существующий на тот момент насос работал так, что просочившаяся основная охлаждающая жидкость собиралась в поддонных полостях реакторного отсека, что могло приводить к очень высокому уровню радиоактивности в отсеке. Риковер потребовал от своих инженеров полностью закрытый, законсервированный насос, который будет использовать основную охлаждающую жидкость для того, чтобы она циркулировала вокруг мотора. Конечно же, Риковеру сказали, что это невозможно. Адмирал обладал взрывным темпераментом и заставил своих инженеров работать ночами и в выходные дни, пока они не совершили невозможное и не создали американский насос охладительной системы, который остается инженерным триумфом и по сей день.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.