Виктор Финкель - Портрет трещины Страница 5

Тут можно читать бесплатно Виктор Финкель - Портрет трещины. Жанр: Научные и научно-популярные книги / Техническая литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Виктор Финкель - Портрет трещины читать онлайн бесплатно

Виктор Финкель - Портрет трещины - читать книгу онлайн бесплатно, автор Виктор Финкель

А вот, например, как делают корпуса ракет больших диаметров. Берут деревянную обичайку в форме ракеты и наматывают на нее слой из тонкой нити-уса. Затем наносят вяжущий слой эпоксидной смолы, потом опять слой нити, смолы и т. д. Получается многослойная стенка, и прочная, и легкая. Так будут изготовлять многометровые цилиндрические колонны для химической промышленности, цилиндры мощных прессов, баллоны для хранения сжатых газов. Недалеко время, когда сверхпрочные материалы на основе тончайших волокон, без преувеличения, покорят современное машиностроение

2 Купэн Г, Искусство и ремесла у животных. Спб., изд. Девриен, 1910. С. 128.

и приведут к появлению в полном смысле легковых автомобилей – в 100 килограмм весом, гигантских и вместе с тем и весе «пера» мостов и «пушинок»-самолетов. И все это абсолютно надежное, прочное. Невольно вспоминаются слова Леонида Мартынова:

Ведь не способна ни рваться, ни гнить Даже в ушке этом тесном игольном Великолепная светлая нить…

Но почему, говоря о теоретической прочности, мы все время твердим об усах? А как же быть с монолитными металлами, ведь именно они основа машиностроения? Вопрос верен. Все дело в том, что, к сожалению, теоретической прочности на монолитных металлах достичь не удалось, хотя это и не означает, что ученые стояли на месте. Теперь получают стали с прочностью до 3 и даже до б ГПа, но до теоретической прочности еще далеко.

Почему для тонких кристаллов мы ее получили, а для монолитных металлов, болванок, слитков, проката теоретических цифр прочности еще нет?

БЕСЦЕННЫЙ ПОРОК

Крокодильими складками бронза морщит…

Л. Симпсон

Итак, почему?

Этот вопрос был одним из самых важных в ряду тех, которые вызваны работой Я. И. Френкеля. Но не единственным. Непонятно было и то, почему прочность реальных кристаллов в сотни и тысячи раз меньше теоретической. Почему чистые металлы мягче сплавов? Почему поликристаллические – тверже монокристаллических? Двадцатые годы на эти вопросы не принесли серьезных ответов.

1934 год был переломным. Английский физик Г. Тейлор из Кэмбриджского университета и венгерский ученый Е. Орован выдвинули гипотезу: в кристаллах существует особый дефект – дислокация, решительным образом меняющая свойства кристаллического материала. Исходили при этом из того, что если бы кристалл был идеальным, то для его деформирования нужно было бы приложить напряжения, равные теоретической прочности. А коль скоро реальные напряжения деформирования незначительны, должен существовать какой-то кон-

центратор, сосредоточивающий приложенное усилие в небольшой части кристалла. Его «построили» так Рассмотрели кристалл как толстую книгу, где атомные слои моделировались листами бумаги. А потом вложили еще один лист размером в полстраницы. По выражению поэта О. Мандельштама, эдакий «журавлиный клин в чужие рубежи». Понятно, что атомный ряд этой полустраницы (его называют экстраплоскостью) обрывается в пространстве. Представим себе далее плоскость скольжения, перпендикулярную листам и проходящую по краю экстраплоскости. По обе стороны от плоскости скольжения атомы наладили между собой взаимодействие, «вцепились» друг в друга. А атом на краю экстра-плоскосги одинокий: ведь у него нет визави – атома напротив. А между тем «желание» вступить в контакт есть. Вот этот-то атом со своей экстраплоскостью и способен творить чудеса.

Приложили мы к кристаллу сдвигающее усилие. Атомы впереди и позади дислокации, за исключением двух-трех по обе ее стороны, крепко держатся один за другой. Иное дело наш «одинокий волк». Ведь в исходном состоянии он находился точно посредине между двумя атомами нижнего ряда и немного выше их. Но вот внешнее усилие слегка сместило его влево. Воспользовавшись этим, он «сцепился» с левым атомом нижнего ряда, оторвав его у прежнего соседа сверху. При этом он перестал быть краем экстраплоскости и вступил в сообщество обычных атомов, – хорошо быть незаметным, как все! Да и экстраплоскость перестала быть экстраплоскостью; ею стала другая, начинающаяся со вновь появившегося «обездоленного» атома, покинутого своим собратом. Расположилась она левее на одно межатомное расстояние. Но вот наладили опять атомы прочный контакт между собой, подтянули свои ряды и оказалось, что дислокация сместилась на одно межатомное расстояние влево. Еще один фокус-смещение, разрыв, новый союз,- и дислокация передвинулась еще левее. И пошло, и пошло… Побежала дислокация влево по кристаллу, каждый раз меняя атомы в своей экстраплоскости, чтобы каждый раз сохранять ее и свою форму.

Прав будет читатель, который задаст прямой вопрос: а откуда она взялась эта дислокация? Ведь не вставляем же мы каждый раз слой новых атомов, как лист в книгу?

Конечно нет! Это наиболее сложный и не полностью выясненный вопрос во всей многотомной теории дислокаций. Существует ряд процессов, при которых дислокации зарождаются в кристаллах, например при кристаллизации из расплава. Возникают дислокации и при сдавливании некоторых микроскопических пор в материале. Роль «родителей», выращивающих дислокации, могут играть другие дислокации. Но повторяю – сложный это вопрос.

Рассмотрим лучше чисто умозрительно эпизод, не имеющий места в жизни, но тем не менее очень удобный как пример для объяснения. Приложили мы сдвигающее усилие к боковой поверхности кристалла и сжали его верхнюю часть так, чтобы сверху над плоскостью скольжения гри атома оказались над двумя нижними. Для этого нам потребовалось сдеформировать кристалл на одно межатомное расстояние. Зато мы получили почти настоящую дислокацию. Если и теперь оказывать давление, то дислокация побежит. Как это происходит, мы уже обсуждали. Грубо говоря, одинокий атом на краю экстраплоскости получает возможность «пожать руку» своему визави и, подтягиваясь, передать функции экстраплоскости другому ряду атомов. Если бы мы нанесли сетку параллелей и меридианов, идущих точно по атомным рядам, то с появлением дислокации карта эта потеряла бы свою геометрическую строгость и правильность.

Почти совсем, как у Сергея Наровчатова: А сейчас сместились меридианы И сжались гармошкою параллели

Справа от дислокации верхняя и нижняя части кристалла смещены на одно межатомное расстояние. А слева от нее сдвига нет. По мере движения дислокации влево за ней тянется сдеформированная область. И когда дислокация пробежит по всему кристаллу и «выскочит» на его поверхность, окажется, что вся верхняя половина кристалла сдвинулась относительно нижней на одно межатомное расстояние. А дислокация при этом исчезла.

Итак, что же такое дислокация? Это линейный дефект кристаллической решетки. Почему линейный? Очень просто – это край экстраплоскости. На чертеже он выглядит точкой, одним атомом. А в действительности этих самых «одиноких волков» много – они сидят на краю экстраплоскости по всей ее протяженности, пер-

пендикулярной чертежу, и каждый из них жаждет «уйти в тень», перейти в статус рядового атома. Но за это он должен «поплатиться» сменой соседа ниже плоскости скольжения, то есть премещением дислокации на одно межатомное расстояние.

Следовательно, дислокация-это линия, нить. Ее движение означает: дислокация осуществляет пластическую деформацию кристалла. Перед нею деформации нет, за ней – есть. Какова же ее толщина? В нашей схеме – один атом; в действительности «потолще», 5-б атомов. А какова ее длина? Она примерно равна размеру кристалла, то есть может составить несколько миллиметров и даже сантиметров. Толщина, таким образом, стомиллионные доли сантиметра, а длина – сантиметры. Ну, чем не нить?

Да, поведение дислокаций подобно поведению тонкого волокна – они способны изгибаться, цепляться за дефекты, а иногда и образовывать ткань из переплетающихся линий. А как вы знаете, тканевый материал обладает довольно высокой прочностью. Поэтому когда множество дислокаций сплетаются, они мешают друг другу двигаться и делают кристаллический материал прекрасно сопротивляющимся пластической деформации, то есть более прочным. В монокристаллах дислокаций не слишком много. Примерно по миллиону на квадратный сантиметр. Эта цифра велика, но из-за того, что дислокации распределены неравномерно, довольно большие пространства кристалла от них свободны. И если в этом районе появилась дислокация, она распространяется без затруднений. Поэтому монокристаллы не слишком прочны.

Иное дело поликристаллический материал, например, сталь. Плотность дислокаций в ней в тысячи и миллионы раз выше, чем в монокристалле. При этом уже дислокации не могут двигаться независимо друг от друга. Они взаимодействуют. Нити дислокаций образуют сложную пространственную структуру, напоминающую клубки переплетенные, запутанные. Понятно, что такой металл труднее деформировать. Он оказывается прочнее.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.