Владимир Поляков - Посвящение в радиоэлектронику Страница 69

Тут можно читать бесплатно Владимир Поляков - Посвящение в радиоэлектронику. Жанр: Научные и научно-популярные книги / Техническая литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Владимир Поляков - Посвящение в радиоэлектронику читать онлайн бесплатно

Владимир Поляков - Посвящение в радиоэлектронику - читать книгу онлайн бесплатно, автор Владимир Поляков

Необходимо сказать несколько слов о конструкции отдельных элементов разработанных радиолокационных станций. Мощный генератор высокой частоты для локаторов, работающих в диапазоне метровых волн, выполняется на электронных лампах, как правило триодах. Но колебательный контур, состоящий из катушки и конденсатора, уже не пригоден, поскольку катушка для частот в десятки и сотни магагерц должна быть маленькой, а это несовместимо с высокой мощностью колебаний. Поэтому катушка вырождается в отрезок двухпроводной линии, выполненной из толстых медных трубок. Линия настраивается передвижным короткозамыкающим мостиком. Симметричная линия лучше всего совмещается с двухтактным генератором, схема которого и показана на рисунке.

Триодный ВЧ генератор.

Конденсатора в контуре нет — его роль выполняют междуэлектродные емкости ламп. Через них осуществляется и обратная связь. Часть переменного анодного напряжения через емкость анод-катод возбуждает другой контур — линию, включенную между катодами ламп. Ее настройкой подбирают нужную для возбуждения колебаний фазу напряжения обратной связи. Сетки ламп заземляют по высокой частоте. Отбор мощности ВЧ колебаний осуществляют петлей связи, расположенной вблизи анодной линии. Напряжение анодного питания подают на короткозамыкающий мостик этой линии через ВЧ дроссель (катушку индуктивности), изолирующий источник питания от ВЧ колебаний.

Генератор будет работать в импульсном режиме, если его питать не постоянным анодным напряжением, а мощными высоковольтными импульсами. Они генерируются в устройстве с тиратроном — газоразрядной лампой, поджигаемой управляющим импульсом. Пока тиратрон погашен, накопительный конденсатор С заряжается через дроссель с большой индуктивностью L от высоковольтного источника. Ток заряда невелик, а время заряда может достичь периода повторения импульсов. Короткий запускающий импульс поджигает тиратрон, и генератор ВЧ оказывается подключенным к накопительному конденсатору, заряженному до высокого потенциала (десятки киловольт). Генерируется очень короткий радиоимпульс, причем анодный ток ВЧ генератора может достичь десятков ампер. Заряд конденсатора расходуется в течение нескольких микросекунд или даже долей микросекунды, генерация прекращается, и тиратрон гаснет. Конденсатор С снова начинает медленно заряжаться через дроссель L. Если бы ВЧ генератор заставили работать при такой мощности несколько дольше, то электроды лампы неминуемо расплавились бы, выгорели или испарились. Только благодаря краткости импульсов ничего этого не происходит, а средняя мощность генератора оказывается для него невысокой и вполне безопасной.

Импульсный генератор.

Импульсный модулятор с накопительным конденсатором имеет один существенный недостаток. По мере расходования заряда конденсатора при генерировании радиоимпульса напряжение на нем быстро падает, а с ним и мощность высокочастотных колебаний. В результате генерируется остроконечный радиоимпульс с пологим спадом. Гораздо выгоднее работать с прямоугольными импульсами, мощность которых в течение их длительности остается примерно постоянной. Прямоугольные импульсы будут генерироваться описанным генератором, если накопительный конденсатор заменить искусственной длинной линией, разомкнутой на свободном конце: например, может использоваться отрезок коаксиального кабеля. Волновое сопротивление линии должно равняться сопротивлению генератора ВЧ колебаний со стороны зажимов питания, т. е. отношению его анодного напряжения к анодному току. В момент поджигания тиратрона вдоль длинной линии побежит волна напряжения, разряжающая линию. Процесс закончится, когда волна напряжения, отразившись от разомкнутого конца линии, вернется к аноду тиратрона. Линия будет разряжена полностью, и тиратрон погаснет. Таким образом, длительность импульса определяется длиной линии и равна отношению удвоенной длины линии к скорости распространения волн в ней. Генераторы модулирующих импульсов с искусственными длинными линиями получили самое широкое распространение в радиолокационной технике.

Для перехода к дециметровым, а потом и к сантиметровым волнам ВЧ генератор с двухпроводными линиями оказался непригодным. Ведь длина линии составляет менее четверти длины волны, так какой же она должна быть на волне, скажем, 3 см? Кроме того, время пролета электронов в лампе оказывается больше периода колебаний, что полностью нарушает работоспособность триода. И здесь нашли выход. Длинные линии-контуры заменили объемными резонаторами. Что же это такое? Поясним на примере. Возьмем ВЧ контур, содержащий индуктивность в виде катушки всего из одного витка и небольшой конденсатор. Будем стараться повысить его резонансную частоту, не уменьшая размеров. Но как, разве это можно? Можно. Подключим вторую такую же катушку — виток параллельно первой. Общая индуктивность уменьшится, а частота возрастет. Подключим третью, четвертую и т. д., пока витки не образуют сплошную стенку вокруг конденсатора. Получился тороидальный объемный резонатор. Раздвинем пластины, чтобы уменьшить емкость и еще повысить частоту. Образовался цилиндрический объемный резонатор. Его размеры составляют от нескольких длин волн до половины длины волны, соответствующей резонансной частоте. Энергия подводится к объемному резонатору и выводится из него с помощью штыря, петли или отверстия связи.

От колебательного контура к тороидальному объемному резонатору.

Цилиндрический и прямоугольный резонаторы.

Объемный резонатор не обязательно должен быть цилиндрическим, он может быть и прямоугольным. Если длину прямоугольного резонатора увеличивать до бесконечности, мы получим волновод — полую металлическую трубу прямоугольного сечения, в которой может распространяться высокочастотная энергия. На сантиметровых волнах двухпроводные фидерные линии сильно излучают, а коаксиальные вносят большие потери. Поэтому передача колебаний к антенне осуществляется только с помощью волноводов.

В волноводах и объемных резонаторах уже трудно говорить о токах или напряжениях. Там существуют электрическое Е и магнитное Н поля, т. е. те же поля, что в электромагнитной волне, распространяющейся в свободном пространстве. Таким образом, в волноводе (в соответствии с его названием) распространяется уже хорошо нам знакомая электромагнитная волна. На рисунке стрелками показаны направления электрического (сплошные линии) и магнитного (штриховые линии) полей.

Волновод.

Энергию волны из волновода в открытое пространство простым и естественным образом можно передать с помощью рупорной антенны. Хорошая рупорная антенна должна быть длинной, поскольку любые неоднородности в волноводе приводят к отражению распространяющейся энергии. Переход от волновода к рупору как-раз и является такой неоднородностью, поэтому он должен быть достаточно плавным. Есть и еще одно соображение в пользу длинных рупоров. Чтобы правильно сформировалась диаграмма направленности, поле в раскрыве антенны должно быть синфазным. Это значит, что колебания поля электромагнитной волны в различных точках раскрыва должны происходить одновременно. Но при распространении от рупора и вдоль его грани волна проходит разный путь и колебания на краях раскрыва запаздывают относительно колебаний в центре. Если разница путей достигнет четверти, или даже половины длины волны, рупорная антенна окажется неэффективной. Для уменьшения указанной разницы путей, рупорные антенны делают длинными.

Рупорная антенна.

Это не совсем удобно, поэтому в радиолокации предпочитают зеркальные антенны, а рупор используют в качестве облучателя зеркала. Ход волн-лучей в антенне с параболическим зеркалом ясен из рисунка. Чем больше размеры антенны, тем уже ее диаграмма направленности. Угловая ширина диаграммы направленности φ связана с размером антенны уже знакомой нам формулой φ = λ/D, где угол φ выражается в радианах. Например, круглое зеркало диаметром 3 м при длине волны 3 см создает игольчатую диаграмму направленности с шириной лепестка всего 0,01 рад, или 0,57°.

-

Параболические антенны.

Диаграмма игольчатого типа нужна далеко не всегда. Например, для корабельной РЛС важно определить пеленг объекта (другого корабля), а его высоту определять не нужно. В этом случае целесообразно выбрать диаграмму направленности «ножевого» типа — узкую в горизонтальной плоскости и широкую в вертикальной.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.