Журнал «Юный техник» - Юный техник, 2010 № 09 Страница 13

Тут можно читать бесплатно Журнал «Юный техник» - Юный техник, 2010 № 09. Жанр: Разная литература / Периодические издания, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Журнал «Юный техник» - Юный техник, 2010 № 09 читать онлайн бесплатно

Журнал «Юный техник» - Юный техник, 2010 № 09 - читать книгу онлайн бесплатно, автор Журнал «Юный техник»

Вот, например, что можно сделать из двух спичек: косой крест в виде знака умножения (1), прямой крест в виде плюса (2), угол (3), буква Т (4) и т. д.

Из трех спичек можно составить: складной стул (5), кровать (6), стол (7), треугольник (8) и т. д.

Из четырех получаются: квадрат (9), параллелограмм (10), изгородь (11), стол (12), стул (13), скамья (14).

Чем больше спичек, тем интереснее и разнообразнее фигуры. Из восьми спичек можно устроить: голубятню (15), уличный фонарь (16) и т. д.

Из десяти мы изобразим: лестницу (17), водокачку (18), домик (19), часовню (20) и т. д.

Можно устроить игру, в которой выиграет либо тот, кто построит больше всего фигур из наименьшего числа спичек, либо тот, кто придумает самую красивую фигуру из одинакового числа спичек.

На рисунке 21 изображена церковь с оградой и деревом, причем на всю картину пошло ровно 100 спичек.

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Блоки питания

Окончание. Начало в предыдущем номере.

Самый простой стабилизатор напряжения любого блока питания (БП) — это буферная аккумуляторная батарея (АКБ). Когда-то я приобрел импортный KB-трансивер, потребляющий более 20 А при напряжении 12… 13,6 В. Строить блок питания на четверть киловатта с трансформатором и сглаживающими конденсаторами огромной емкости не хотелось.

Проблема решилась на удивление просто — поставил на балконе старую АКБ, отслужившую свое на автомобиле, и провел от нее толстые провода к трансиверу. Другие провода — тонкие — шли от АКБ к простейшему маломощному БП с трансформатором и двухполупериодным выпрямителем, отдающему ток не более нескольких сотен миллиампер (рис. 1).

Он не выключался сутками, поддерживая АКБ в заряженном состоянии, а при работе трансивера АКБ отдавала нужный ему ток, расходуя накопленный заряд. Любопытно, что в таком режиме многие и совсем плохие АКБ частично восстанавливают свои свойства.

Система оказалась настолько хороша, что используется до сих пор, и всегда на столе есть гарантированно постоянное напряжение 12,6 В. Вольтметр постоянно подключен к АКБ и всегда показывает выходное напряжение.

Кислотная свинцовая АКБ, полностью заряженная и выдержанная без нагрузки в течение нескольких часов, должна иметь напряжение (в данном случае оно соответствует ЭДС) около 12,7 В. Полностью разряженная — 12,0 В. Так что по напряжению можно судить о степени заряженности АКБ.

Вольтметр годится любого типа — просто подберите добавочное сопротивление к имеющейся у вас головке. При желании можно сделать шкалу растянутой для большей точности отсчета.

Для этого включите последовательно с головкой и ее добавочным сопротивлением маломощный стабилитрон на 10 В (рис. 2).

Тогда стрелка головки начнет отклоняться лишь по достижении напряжения в 10 В, а далее вольтметр будет работать, как обычно. Например, если вы подберете добавочное сопротивление так, чтобы из головки получился вольтметр на 5 В, и затем подключите стабилитрон, то получится вольтметр со шкалой от 10 до 15 В. Если нет стабилитрона точно на 10 В, а есть, скажем, на 9,1 В (КС191), включите последовательно с ним один или даже несколько маломощных диодов, как показано на том же рисунке 2. Каждый кремниевый диод увеличивает напряжение стабилизации на 0,5 В, а германиевый — на 0,15 В. На стабилитроне легко построить и простейший параллельный стабилизатор напряжения (рис. 3).

Он содержит всего две детали — балластный резистор R1 и стабилитрон VD1. Выходное напряжение определяется стабилитроном, балластный резистор рассчитывают по формуле:

R1 = (Uист — Ucт)/Imax,

где Uист — напряжение источника, Uст — стабилизированное напряжение, Imax — максимальный ток, отдаваемый в нагрузку. Он не должен превосходить максимально допустимого для данного типа стабилитрона. От источника же данный стабилизатор всегда потребляет ток Imax, при подключении нагрузки происходит лишь перераспределение тока между ней и стабилитроном. Следовательно, КПД этого стабилизатора в большинстве случаев крайне низок, и используют его лишь в маломощных устройствах. Зато он не боится коротких замыканий (КЗ) выхода!

Недостаток параллельного стабилизатора в том, что он всегда потребляет от источника (выпрямителя) ток, равный максимальному. Если вы не используете весь этот ток или совсем отключили нагрузку, стабилизатор только бесполезно «перегоняет» электричество в тепло. Более совершенны стабилизаторы с последовательным включением регулирующего элемента, обычно транзистора средней или большой мощности. Основой такого устройства служит маломощный параллельный стабилизатор, который мы уже изучили. Но его стабильное напряжение передается в нагрузку более мощным эмиттерным повторителем, собранным на транзисторе VT1 (см. рис. 4).

А ток в нагрузку от выпрямителя идет именно такой, какой нагрузка и потребляет. Конденсатор С1 в этом устройстве — обычный сглаживающий конденсатор диодного выпрямителя. Его емкость обычно — несколько тысяч микрофарад. Если же источником служит АКБ, конденсатора может и не быть. Элементы R1 и VD1 образуют маломощный параллельный стабилизатор на ток 5…20 мА. Максимальный ток нагрузки будет в Вст раз больше (напомним, что Вст — коэффициент передачи транзистора VT1 по току, обычно 30… 100).

Если такого тока недостаточно, можно применить составной транзистор.

Напряжение стабилизации VD1 должно быть примерно на 0,6 В больше, чем требуемое выходное напряжение всего стабилизатора. На транзисторе VT1 при максимальном токе нагрузки рассеивается значительная мощность, которую оценивают по формуле

P = (Uист — Ucт)/Imax,

Обращайте внимание на справочные данные транзистора, его допустимые рассеиваемая мощность и ток должны быть не меньше расчетных значений.

К недостаткам этого стабилизатора относится отсутствие защиты от перегрузки слишком большим током и от короткого замыкания на выходе. Однако такую защиту легко ввести, использовав еще один маломощный транзистор VT2 и проволочный резистор R2 с небольшим сопротивлением (рис. 5).

Его рассчитывают так: R2 = 0,5/Imax. Например, если Imax = 1 А, то R2=0,5 Ом.

При допустимых токах нагрузки транзистор VT2 закрыт и никак не влияет на работу устройства, если же ток больше Imax, то падение напряжения на резисторе R2 превысит 0,5 В — порог открывания транзистора, и он откроется, снижая напряжение на базе транзистора VT1, а следовательно, и на нагрузке.

Нагрузочная характеристика стабилизатора показана на рисунке 6.

Он поддерживает практически постоянное напряжение на нагрузке в диапазоне токов от нуля до Imax, а далее резко снижает выходное напряжение, поддерживая постоянный ток Imax. Стабилизатор с такими свойствами подходит как для питания радиоэлектронных устройств, так и для зарядки аккумуляторов.

В. ПОЛЯКОВ, профессор

ЧИТАТЕЛЬСКИЙ КЛУБ

Вопрос — ответ

Прочитал в газете, что в нашей стране создана самая маленькая в мире рентгеновская установка. Для чего она понадобилась? Как работает?

Андрей Коровин,

г. Кострома

Речь, видимо, идет о работе сотрудников Физического института РАН. «Для создания установки они использовали микровзрыв тончайших проволочек, скрещенных в виде буквы X. В центре конструкции образуется плазма, которая за очень короткое время — порядка 100 наносекунд — успевает нагреться до солнечных температур, сжаться до микронных размеров и начать излучать в рентгеновском диапазоне».

Этот эффект, названный Х-пинчем, и позволил создать сверхкомпактную рентген-установку для диагностики сверхмалых объектов. Вместо «ящика» объемом в несколько кубометров получился прибор, который свободно умещается на углу письменного стола. Такая установка, например, в медицине позволит заглянуть в самые мелкие структуры организма, а краткость облучения — меньше наносекунды — делает обследование совершенно безопасным.

Конструкцию московские физики создали вместе с сотрудниками Томского института сильноточной электроники СО РАН.

Слышал по радио, что информация лучше усваивается не сидя, а лежа. Это правда?

Иван Кириллов,

г. Вологда, 10 лет

Феномен объясняется тем, что в горизонтальном положении к мозгу приливает больше крови, а значит, улучшается его питание и человек быстрее запоминает. Но лежачее положение, как известно, человек принимает чаще всего, когда собирается спать. Так что у многих может включиться механизм засыпания, а значит, торможения всех функций головного мозга. Поэтому исследователи советуют поэкспериментировать, подобрать для себя наиболее подходящую позу.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.