Вокруг Света - Журнал «Вокруг Света» №09 за 2008 год Страница 26

Тут можно читать бесплатно Вокруг Света - Журнал «Вокруг Света» №09 за 2008 год. Жанр: Разная литература / Периодические издания, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Вокруг Света - Журнал «Вокруг Света» №09 за 2008 год читать онлайн бесплатно

Вокруг Света - Журнал «Вокруг Света» №09 за 2008 год - читать книгу онлайн бесплатно, автор Вокруг Света

Логика или интуиция?

Как уже было сказано, платонизм является «тайной» философией работающего математика, который должен быть уверен в реальности открываемых им сущностей. Действительно, удивительная красота и загадочность математических структур убеждают нас в том, что за пределами наших чувств существует реальность, доступная лишь интеллекту. Знаменитый математик и физик Роджер Пенроуз , убежденный платонист, говорит, что трудно избежать веры в эту реальность, рассматривая диаграммы множеств Мандельброта.

Но если существует внечувственная реальность, то каким же образом мы, обладающие скромными пятью чувствами, можем знать об этом мире? Это действительно трудный вопрос для платониста. На него давались различные ответы. Бернард Шоу как-то сказал, что мысль автора становится яснее, когда она доводится до крайности. Таким взглядом представляется точка зрения одного из величайших логиков в истории мысли Курта Гёделя . Он считал, что интуиция математика, постигающего идеальные структуры и объекты, аналогична чувственным восприятиям человека, познающего предметы материального мира. В этом смысле математическая интуиция выступает в качестве мистического инструмента познания. С другой стороны, трудно отрицать, что именно интуиция играет огромную роль в познании, и наша рациональная мысль, если прибегнуть к каламбуру, немыслима без интуиции.

Однако мистические прозрения могут дать нам истину, а могут и вводить в заблуждение. Уильям Джемс , знаменитый американский философ и психолог, приводит пример, как человек под действием веселящего газа — закиси азота — впадал в транс, в котором ему казалось, что он знает тайну мира, но, приходя в сознание, он забывал ее. Однажды ценой огромных усилий он в состоянии транса записал на бумаге эту тайну. Каково же было его удивление, когда по выходу из транса он увидел запись: «Повсюду пахнет нефтью».

Где же гарантия, что интуиция не обманывает нас в отношении тех самых математических объектов, восприятие которых она, согласно Гёделю, обеспечивает? Что служит критерием верности математического знания? Универсальный ответ дается одним словом: доказательство. Так называют дедуктивную цепочку рассуждений, убеждающую в правильности сделанного утверждения. Но постижению доказательства, как познавательному процессу, присуща определенная двойственность. С одной стороны, человек смотрит на доказательство, и — раз! — происходит чудо, часто называемое «ага, понял!». Этот момент «схватывания» идеи, уяснения сути аргумента напрямую связан с интуитивным постижением чужой мысли, заключенной в символы или утверждения. С другой стороны, чтобы достичь этого «момента истины», нужна тренировка в области математического мышления. Необходимо освоить элементарную логику рассуждения и, как говорят философы, признавать нормы рационального мышления, которые и позволяют людям понимать друг друга. Какая бы интуиция и озарение ни сопутствовали открытию математиком новой истины или нового объекта, для того чтобы передать свое знание или убедить в его правильности, необходимы общий язык и общие нормы, которые реализуются в доказательствах.

Немецкий математик Давид Гильберт (1862—1943) выдвинул масштабную программу обоснования математики путем ее полной формализации на основе теории множеств (на фото слева). Голландец Лёйтзен Эгберт Ян Брауэр (1881—1966) выступал с критикой этого подхода ввиду присущих наивной канторовской теории множеств антиномий, а главное — контринтуитивности рассуждений, включающих бесконечные множества. Фото: SPL/EAST NEWS

Математическая «схизма»

Хотя в разных областях человеческой деятельности нормы рационального мышления могут варьироваться, во всем этом разнообразии существует «сердцевина», олицетворяемая логикой. Аргументация убеждает, только если в ней соблюдены правила логики. Если же человек от них отступает, он оказывается вне профессионального сообщества. Безусловно, сами эти нормы изменяются по ходу времени, и это напрямую относится к представлениям о математическом доказательстве. На протяжении всей истории математики менялись требования к строгости доказательств. Интуитивно понятные доказательства теорем в XVII—XVIII веках постепенно сменились строгими формальными выкладками. При этом внутри профессионального сообщества стали нарастать разногласия относительно природы и надежности доказательств. В итоге к началу XX века в математическом сообществе возникла «схизма», противоположные лагеря которой возглавили немецкий ученый, «король математики» Давид Гильберт и голландский математик Лёйтзен Брауэр .

Спор шел о допустимости использования в доказательствах бесконечности. Брауэр и его сторонники, полагая интуицию базисом всего математического знания и исходя из невозможности интуитивного представления бесконечности, отвергли те части математики, в которых признается существование бесконечных объектов как чего-то данного, завершенного, то есть так называемой актуальной бесконечности. Ключевым моментом полемики стал вопрос, допустимо ли использовать в математических рассуждениях один из основных принципов логики — закон исключенного третьего (который гласит, что из двух отрицающих друг друга высказываний одно непременно должно быть истинным). Этот закон широко используется в классической математике, но ограничивается в интуиционистской, когда речь заходит о бесконечных объектах. Таким образом, даже логика самого строгого вида аргументации — математического доказательства — может подвергаться сомнению.

Подсказки богини Наматжири

Иногда такие сомнения находят свое интереснейшее выражение. История индийского математика Сринивасы Рамануджана (1887—1920) показывает, что природа человеческого гения чрезвычайно разнообразна, даже там, где присутствуют жесткие нормы мышления. Стараниями известного английского математика Годфри Харди способный молодой человек из Индии попал в Англию, где проявил себя в качестве одной из самых примечательных фигур в теории чисел. Его результаты были неожиданными и красивыми, но по характеру творчества он радикально отличался от других математиков. Он не знал, что такое доказательство. Его результаты были итогом чисто интуитивного прозрения и часто приходили во сне: ему диктовала их богиня Наматжири. Поразительно было как то, что большинство его формул оказывались верными, так и то, что иногда богиня ошибалась. При этом формулы были воистину красивыми и загадочными.

Мы уже упоминали о том, что натуральные числа есть просто «места» в структуре — натуральном ряду. Но это более или менее современная точка зрения. Ранее, например в Античности, процветала нумерология, в которой отдельным числам приписывались магические свойства. Эти представления широко используются и в нынешних оккультных сочинениях и обрядах. Видимо, были такие времена в истории ранних цивилизаций, когда числа воспринимались как индивидуальные объекты точно так же, как мы распознаем отдельных людей. Что-то в этом спорном положении подтверждается историей с Рамануджаном. Он «знал» числа напрямую, как своих знакомых. Много раз описан разговор Харди с лежащим в больнице Рамануджаном. «Я ехал в такси с ничем не примечательным номером — 1729», — начинает посетитель «пустой» разговор с больным. «Нет, Харди, ты неправ, — отвечает Рамануджан. — Это очень интересное число. Это наименьшее число, которое можно представить в виде суммы двух кубов двумя различными способами». Создается впечатление, что Рамануджан знает числа непосредственно, «лично». В этом отношении существуют восхитительные спекуляции по поводу «феномена» Рамануджана. В одной из популярных книжек было высказано предположение, что математика сейчас есть функция левосторонней части мозга, которая определяет аналитические способности человека. Но вполне возможно, что в период, когда доминирующей была правосторонняя часть мозга, ответственная за чувственные восприятия, человек познавал «непосредственно». И тогда можно предположить, что Рамануджан являлся «осколком» той древней цивилизации, которая развивала математику совсем по другому пути. Но эта романтическая догадка так и остается догадкой.

Сриниваса Айенгор Рамануджан (1887—1920), не имея специального математического образования, получил множество неожиданных и красивых формул, о которых говорили, что ни у кого другого не «хватило бы воображения, чтобы их изобрести». Фото: SPL/EAST NEWS

Большое доказательство

Итак, дедуктивное доказательство есть единственно убедительное свидетельство существования математических объектов и истинности математических утверждений. И коль скоро речь идет об убедительности — ведь доказательство представляет собой аргумент, — есть все основания полагать его «рукотворным». Дело в том, что убедительная аргументация должна быть обозримой. Американский математик Хао Ван заметил как-то, что если доказательство изложено на паре сотен страниц и каждая страница убедительна в отдельности, то в любом случае трудно представить, что в голове эти две сотни страниц могут уложиться в их взаимосвязи. Ясно, что при этом математики ищут выход в том, что укрупняют фрагменты доказательства, делая весь ход мысли более понятным. Но что можно сказать о доказательстве теоремы, которое изложено на 15 000 страниц? Можно ли прочесть такое доказательство? Можно ли считать его убедительным аргументом? Но такой аргумент существует — это доказательство теоремы о том, что обнаружены все простые конечные группы (подробнее об этой теореме и связанном с ней кризисе рассказывается в статьях Д. Горенстейна и Б. Дэвиса). Естественно, такой труд не под силу одному человеку, и в доказательстве принимали участие более 100 математиков. Полное доказательство разбросано по страницам 500 журналов, выходивших на протяжении 40 лет.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.