Журнал «Юный техник» - Юный техник, 2008 № 04 Страница 5
Журнал «Юный техник» - Юный техник, 2008 № 04 читать онлайн бесплатно
Заодно, как ни странно, ученым, делающим первые попытки создания методов «механической сборки» тканей и органов, удалось решить и еще одну принципиальную проблему. Ведь для того чтобы получить подобие функционирующего органа, нужно использовать клетки разных типов, имеющих совершенно четкое месторасположение. Каким образом с помощью технологий биопечати получить сложнейшую структуру? И тут выяснилось, что клетки сами находят свое место, как солдаты в строю.
Так, в одном из экспериментов для создания биочернил ученые использовали клетки куриного сердца. Как только капли «чернил» слились вместе, клетки начали синхронные сокращения, как и подобает ткани сердца.
Форджэкс твердо намерен довести свои разработки до практического применения и уже получил на это грант в 5 млн. долларов. По утверждению ученых, «печатные» органы уже в ближайшее время могут пригодиться фармацевтам, чтобы испытывать на них новые препараты и лечебные методики, чтобы не подвергать риску добровольцев, а затем дело дойдет и до изготовления дублей настоящих органов. Ведь сегодня, согласно статистике, пересадки донорских органов во всем мире дожидается более миллиона человек.
В. ВЛАДИМИРОВ
КстатиСОЗДАТЬ МИНОТАВРА?
Вот какой вариант создания организма, который не известен природе, предложили недавно сотрудники Ньюкаслского университета и Лондонского королевского колледжа. Они хотят получить лицензию на работу с «человеко-коровьими» эмбрионами. Тем самым британские исследователи вновь заставили мир вспомнить о Минотавре — мифическом чудовище с головой быка и телом человека.
Зародыши планируют получить довольно необычным способом: сначала человеческую ДНК микрохирургическим путем поместят в яйцеклетку коровы, из ядра которой предварительно удалят ее собственный генетический материал. Затем зародыш будут растить в теле суррогатной матери так, как в свое время произвели на свет овечку Долли. В результате получится эмбрион, являющийся человеческим на 99,9 процента, полагают исследователи.
Одна десятая процента достанется ему от коровы — за счет ДНК, находящейся за пределами ядра яйцеклетки. Как может выглядеть существо с подобным геномом, останется лишь гадать, поскольку авторы проекта не собираются доводить дело до появления на свет малыша Минотавра. Развитие эмбриона прервут через шесть дней, чтобы получить из зародыша стволовые клетки.
Собственно, из-за них, этих самых клеток, обладающих, как считают некоторые, мощнейшим потенциалом для лечения множества болезней и предотвращения старения британцы и затеяли этот эксперимент. А корова нужна как своего рода живой инкубатор.
Впрочем, британским исследователям вряд ли удастся получить лицензию. Эксперты по биоэтике считают, что при всех научных выгодах нарушать границы между человеком и животным миром категорически нельзя. Так что британцы затеяли всю эту шумиху скорее всего лишь с целью привлечь к себе общественное внимание. Реклама — двигатель торговли.
В. ЧЕРНОВ
ГОРИЗОНТЫ НАУКИ И ТЕХНИКИ
10 молекул, которые изменили мир
Казалось бы, много ли зависит от одной молекулы? Вот это и решили выяснить два американца — химик Рэй Гигери и музейщик Джон Вебер. Они организовали в колледже Скидмора (штат Нью-Йорк) выставку, посвященную десяти органическим молекулам, оказавшим наибольшее влияние на материальную культуру и образ жизни человечества за 100 лет — с конца XIX по конец XX века. Вот какие вещества попали в их список.
Под первым номером значится молекула аспирина, или ацетилсалициловой кислоты. Само по себе это вещество впервые получил страсбургский химик Чарльз Герхард еще в 1853 году. Но прошло еще 44 года, прежде чем в начале XX века Феликс Хоффман, сотрудник фармацевтической компании Bayer, догадался, что аспирин можно использовать в медицине как жаропонижающее и обезболивающее средство.
В 1950 году аспирин был внесен в Книгу рекордов Гиннесса как самое распространенное лекарство в мире. Те же американцы используют его от «ста болезней». Однако лишь в 1982 году английский фармаколог Джон Вейн получил Нобелевскую премию по физиологии и медицине «за открытия в области простагландинов и родственных им биологически активных веществ». То есть ему впервые удалось более или менее внятно объяснить механизмы воздействия аспирина на организм человека.
Герой первого десятилетия XX века — изооктан, предельный углеводород, использующийся в качестве антидетонационной присадки к бензину. Именно для изооктана так называемое октановое число принимают равным сотне. Увеличение октанового числа улучшает эксплуатационные качества бензина: повышает срок службы двигателя и препятствует снижению его мощности.
Звездой 20-х годов ученые признали пенициллин, первый лактамный антибиотик, который «случайно» в 1928 году открыл английский микробиолог Александр Флеминг. Легенда гласит, что как-то раз Флеминг заметил в давно не мытых лабораторных чашках с колониями стафилококков загрязнения плесневыми грибками, причем вокруг пятен плесени бактерии не размножались. Позже выяснилось, что «бульон», сделанный из этих грибков, тоже обладает антибактериальной активностью.
Первоначально «бульон» и использовался для лечения. Однако спустя несколько лет благодаря усилиям соотечественников Флеминга — биохимика Эрнста Чейна и патолога Хауарда Флори — пенициллин удалось выделить в чистом виде, резко повысив тем самым его эффективность, и внедрить в широкую клиническую практику. За это в 1945 году Флеминг, Флори и Чейн были удостоены Нобелевской премии.
В 30-е годы отличился полиэтилен — материал, получаемый полимеризацией газа этилена. В настоящее время в зависимости от способа синтеза различают полиэтилен низкой плотности (впервые получен в Великобритании в 1932 году) и полиэтилен высокой плотности (получен в Германии в 1953 году). Перечислить все то, что сегодня делают из полиэтилена, наверное, не сможет ни один человек.
За полиэтиленом следует нейлон — синтетическое волокно, полученное химиком американского концерна Du Pont Уоллесом Карозерсом в 1935 году. В 1939 году нейлон был представлен на Всемирной выставке в Нью-Йорке, а массовое производство изделий из нейлона началось после Второй мировой войны. В первую очередь женщинам очень понравились нейлоновые чулки, а мужчинам — нейлоновые канаты, сети и паруса.
В 50-е годы наибольшим вниманием исследователей пользовалась молекула ДНК. В 1962 году Нобелевская премия по физиологии и медицине была присуждена биофизикам Фрэнсису Крику, Морису Уилкинсу (Великобритания) и биохимику Джеймсу Уотсону (США) «за установление структуры ДНК и ее роли в передаче наследственной информации».
В начале 60-х годов, по мнению ученых из Скидмора, своеобразную революцию на Западе произвело появление в продаже синтетических прогестинов — гормональных противозачаточных средств, полученных мексиканским химиком Луисом Мирамонтесом.
Химической визитной карточкой 70-х годов стал ДДТ — дихлордифенилтрихлорэтан — эффективный синтетический ядохимикат, который в некоторых странах до сих пор применяют для уничтожения очагов малярии и сыпного тифа. Кстати, сам ДДТ впервые получен еще в 1874 году немецким химиком Отмаром Цайдлером, но инсектицидные свойства препарата были значительно позже открыты швейцарским химиком Паулем Мюллером, получившим за это Нобелевскую премию.
ДДТ получил было широкое распространение в сельском хозяйстве, но вскоре выяснилось, что препарат имеет способность накапливаться в тканях людей и животных, вызывая генетические заболевания. И в конце тех же 70-х годов применение ДДТ было запрещено во многих странах, в том числе и в СССР.
В 80-е годы стал моден «препарат хорошего настроения» — антидепрессант прозак. В 1988 году препарат появился на прилавках США, а в настоящее время «синтетическое счастье» продается в 90 странах. По статистике, каждый двадцатый житель США регулярно принимает прозак.
Замыкают список фуллерены и нанотрубки. Фуллерены — одна из форм существования углерода в виде сферических молекул состава С60 или С70 — обнаружены в 1985 году американцами Робертом Керлом, Ричардом Смоли и британцем Харольдом Крото. За это они были удостоены Нобелевской премия по химии в 1996 году.
Углеродные же нанотрубки в 1991 году обнаружил японский химик Сумио Иджима, изучая осадок, полученный после распыления графита в электрической дуге. Триумфальное шествие фуллеренов и нанотрубок по планете нам, видимо, еще предстоит наблюдать.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.