Алекс Беллос - Красота в квадрате Страница 25

Тут можно читать бесплатно Алекс Беллос - Красота в квадрате. Жанр: Разная литература / Прочее, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Алекс Беллос - Красота в квадрате читать онлайн бесплатно

Алекс Беллос - Красота в квадрате - читать книгу онлайн бесплатно, автор Алекс Беллос

Я рассказал о гиперболе в последнюю очередь, хотя это именно то коническое сечение, с которым мы уже встречались. Когда две величины обратно пропорциональны друг другу, как было с частотностью употребления слов в романе Джеймса Джойса «Улисс» и их порядковым номером в списке, их математическую зависимость можно представить в таком виде: , где k — это константа. Данное уравнение описывает гиперболу, в которой в качестве асимптот выступают горизонтальная и вертикальная оси. Многие законы природы включают в себя обратно пропорциональные величины — например закон Бойля—Мариотта, который гласит, что давление газа обратно пропорционально его объему. Следовательно, гиперболы широко распространены в науке. Даже такой общеизвестный статистический термин, как «длинный хвост», используется во многих случаях как эвфемизм для замещения гиперболы и ее асимптоты.

Кривая  — это гипербола

Мы начали эту главу с определения конических сечений как фигур, образующихся в результате рассечения конуса секущей плоскостью, а затем проанализировали свойства каждой фигуры в отдельности. А завершим последним, всеобъемлющим определением: конические сечения — это кривые, для которых отношение расстояний до точки (фокуса) и до прямой (директрисы) представляет собой постоянную величину. Если отношение расстояния от кривой до точки к расстоянию от кривой до прямой линии больше 1 (а это значит, что кривая всегда пропорционально ближе к директрисе, чем к фокусу), мы имеем гиперболу, как показано на рисунке ниже. Когда это соотношение равно 1 — параболу, а когда оно меньше 1 — речь идет об эллипсе. Данные соотношения известны как эксцентриситеты каждой кривой, поскольку они показывают степень их отклонения от окружности. На представленном ниже рисунке изображены три кривые с общим фокусом F и общей директрисой. Эксцентриситет эллипса составляет 0,75, гиперболы — 1,25.

Коническое сечение

Гипербола

Парабола

Эллипс

Окружность

Экс­цен­три­си­тет

A1/A2 = k > 1

B1/B2 = 1

C1/C2 = k < 1

0

Конические сечения: семейство эксцентриков

А теперь представьте, что вы — астроном, а размещенный выше рисунок — модель Солнечной системы. Пусть F — это Солнце. Конические сечения с фокусом в точке F и есть совокупность всех возможных орбит небесных тел.

Планеты вращаются вокруг Солнца по эллипсам: у орбиты Земли эксцентриситет 0,0167, что очень близко к окружности. Чем быстрее объект перемещается по своей орбите, тем больше ее эксцентриситет. Например, орбитальная скорость кометы Галлея в два раза больше орбитальной скорости Земли. Орбита кометы напоминает доску для серфинга, на одном конце которой находится Солнце; именно поэтому на протяжении всех 75 лет, требующихся комете Галлея для прохождения орбиты, она находится слишком далеко, чтобы увидеть ее невооруженным глазом. Эксцентриситет орбиты кометы Галлея — 0,967, что близко к параболе. Когда эксцентриситет орбиты кометы равен 1, она представляет собой параболу, а это значит, что комета пройдет рядом с Солнцем только один раз за время своего существования, после чего покинет Солнечную систему навсегда. Если эксцентриситет орбиты кометы больше 1, эта орбита является гиперболой. Однако такие кометы — крайне редкие явления, а орбитальная скорость тех, которые обнаружены, незначительно превышает скорость, необходимую для того, чтобы отклониться от эллиптической орбиты. Комета C/1980 E1, замеченная в 1980 году, перемещается по орбите с эксцентриситетом 1,057 — это самый большой эксцентриситет из всех когда-либо зарегистрированных.

Представьте, что директриса и фокус F на рисунке зафиксированы. Посмотрим, что произойдет с коническими сечениями в случае изменения эксцентриситета. Когда он равен нулю, кривая представляет собой окружность с центром в фокусе F. Теперь медленно увеличим эксцентриситет от 0 до 1. Появляется эллипс, который становится все больше и больше. Поскольку точка F зафиксирована, другой фокус, обозначенный как f, начнет медленно смещаться вправо по мере увеличения эллипса. Как только эксцентриситет достигнет значения 1, эллипс превратится в параболу, а точка f станет бесконечно удаленной. Если сделать эксцентриситет больше 1, кривая превратится в гиперболу, а в левой части рисунка появится второй фокус f. По мере дальнейшего роста эксцентриситета все полученные кривые будут гиперболами, а фокус f будет смещаться все дальше вправо. В своем труде The Optical Part of Astronomy («Оптика в астрономии») Иоганн Кеплер впервые высказал идею о том, что конические сечения могут превращаться друг в друга так, как это показано выше. Подобно многим другим идеям Кеплера, эта имела переломное значение, поскольку позволила по-новому взглянуть на две концепции, над которыми веками бились философы: непрерывность и бесконечность. Это был важный шаг на пути к новому способу выполнения математических вычислений. Мы вернемся к великому немцу и его пониманию данных концепций чуть позже, при обсуждении исчислений бесконечно малых величин.

Конические сечения — одно из величайших наследий древнегреческой математики: простые в описании, поддающиеся наблюдению повсюду, они положены в основу прекрасных теорий и нашли неподвластное времени применение во многих областях. Возможно, у вас создалось впечатление, что окружность — наименее интересная разновидность эллипса. Но это далеко не так. Окружность сама по себе заслуживает отдельной главы.

5. Движение по замкнутому кругу

Окружность, простейшая из всех двумерных фигур, представляет собой геометрическое место точек, равноудаленных от центра. Она — воплощение геометрического совершенства: сглаженная со всех сторон, гармоничная и симметричная. Однако если мы разделим расстояние вокруг окружности (длину окружности) на расстояние поперек окружности (длину диаметра), то получим нечто поразительное:

3,141­592­653­589­793­238­462­643­383­279­502­884­197­169­399­375­105­820­974­944­592­307­816­406­286­208…

Это число, равное отношению длины окружности к ее диаметру, является постоянной величиной для всех окружностей, а его десятичные цифры образуют бесконечный ряд без какой-либо закономерности. В XIX веке это число получило собственное имя — «пи», а также символ — π и стало межкультурной иконой, самой знаменитой константой в науке и метафорой для обозначения непостижимости Вселенной. Все изучают его в школе, а для многих это единственное, что они помнят из математики.

Но вот что я вам скажу.

Пи — неправильное число.

Безусловно, оно рассчитано верно. Очевидно, что отношение длины окружности к длине ее диаметра — это и есть представленное выше число, которое начинается с 3,14. Пи — неправильное число потому, что оно совершенно не подходит для описания окружности. Пи — это самозванец, ложный идол, не заслуживающий международного признания.

Во всяком случае, так считал американский математик Боб Пале в 2001 году [1]. Он заявил, что куда более подходящей константой для описания окружности было бы отношение длины окружности к радиусу, поскольку радиус, или расстояние от центра окружности до любой ее точки, — гораздо более фундаментальная концепция, чем диаметр. Многие с ним согласны, в том числе и я [2]. Посмотрите на определение окружности. Окружность — это фигура, образованная путем вращения фиксированного отрезка (радиуса) вокруг центра. Диаметр — это производная концепция. Математике свойственно неизменное стремление к элегантности, ясности и корректности, именно поэтому так неуместно то, что самое знаменитое число в математике не отражает истину об окружностях самым понятным, изящным и корректным способом. (В школе нам объясняют, что такое диаметр, исключительно для того, чтобы мы поняли концепцию числа π, однако, усвоив ее, мы больше не возвращаемся к диаметру. Математики считают само собой разумеющимся, что диаметр — это радиус, умноженный на два.)

В 2010 году предприниматель из Кремниевой долины Майкл Хартл усилил настроения против числа π, окрестив отношение длины окружности к радиусу греческой буквой τ («тау»). Тау равно двум пи, поскольку диаметр окружности в два раза больше радиуса. Другими словами, число τ равно:

τ = 2π = 6,283­185­307­179­586­476­925­286­766…

Как и в случае π, количество десятичных цифр в этом числе бесконечно и не подчиняется ни одной известной закономерности.

В «Манифесте о числе тау» (Tau Manifesto) Хартл призывает молодых математиков заменить π на τ в своей работе [3]. Для начала во всех научных трудах можно было бы делать такое вступление: «Для удобства примем, что τ = 2π». Хартл предупреждает, что борьба будет долгой, поскольку противник достаточно силен благодаря столетиям пропаганды. «Хотя некоторые условные обозначения неуместны, отменить их фактически невозможно, — пишет он. — [Однако] переход от π к τ может… произойти постепенно; в отличие от переопределения, это не должно происходить сразу».

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.