Стивен Строгац - Удовольствие от Х Страница 3
Стивен Строгац - Удовольствие от Х читать онлайн бесплатно
Ключом к нему будет наблюдение, что нечетные числа можно представить в виде равносторонних уголков, последовательное наложение которых друг на друга образует квадрат!
Подобный способ рассуждений представлен еще в одной недавно вышедшей книге. В очаровательном романе Ёко Огавы The Housekeeper and the Professor («Домработница и профессор») рассказывается о проницательной, но необразованной молодой женщине и ее десятилетнем сыне. Женщину наняли ухаживать за пожилым математиком, у которого из-за полученной черепно-мозговой травмы в краткосрочной памяти сохраняется информация только о последних 80 минутах жизни. Потерявшись в настоящем, один в своем убогом коттедже, ничего не имея, кроме чисел, профессор пытается общаться с домработницей единственным известным ему способом: спрашивая о размере ее обуви или дате рождения и ведя с нею светскую беседу о ее расходах. Профессор также питает особую симпатию к сыну экономки, которого называет Рут (Root — корень), потому что у мальчика сверху плоская голова, и это напоминает ему обозначение в математике квадратного корня .
Однажды профессор предлагает мальчику простую задачу — найти сумму всех чисел от 1 до 10. После того как Рут аккуратно складывает все числа между собой и возвращается с ответом (55), профессор просит его поискать более простой способ. Сможет ли он найти ответ без обычного сложения чисел? Рут пинает стул и кричит: «Это несправедливо!»
Мало-помалу домработница тоже втягивается в мир чисел и сама тайно пытается решить эту задачу. «Я не понимаю, почему так увлеклась детской задачкой, которая не имеет никакой практической пользы», — говорит она. «Сначала я хотела угодить профессору, но постепенно это занятие превратилось в сражение между мной и числами. Когда я просыпалась утром, уравнение уже ждало меня:
1 + 2 + 3 +. . . + 9 + 10 = 55,
и весь день следовало по пятам, будто было выжжено на сетчатке моих глаз, и его никак не получалось проигнорировать». Существует несколько путей решения задачи профессора (интересно, сколько сможете найти вы). Профессор сам предлагает способ рассуждений, который мы уже применили выше. Он интерпретирует сумму от 1 до 10 в виде треугольника из камешков, с одним камешком в первой строке, двумя во второй и так далее, до десяти камешков в десятом ряду.
Эта картинка дает четкое представление о негативном пространстве. Оказывается, оно заполнено только наполовину, что показывает направление творческого прорыва. Если скопировать треугольник из камешков, перевернуть его и соединить с уже существующим, то получится нечто весьма простое: прямоугольник с десятью рядами по 11 камешков в каждом, причем общее число камней составит 110.
Так как исходный треугольник — половина этого прямоугольника, то вычисляемая сумма чисел от 1 до 10 должна быть половиной 110, то есть 55.
Представление числа в виде группы камешков может показаться необычным, но на самом деле так же старо, как и сама математика. Слово «вычислять» (англ. calculate) отражает это наследие и происходит от латинского calculus, означающего «галька», которую римляне использовали при выполнении вычислений. Чтобы получать удовольствие от манипуляций с числами, не обязательно быть Эйнштейном (что по-немецки означает «один камень»), но, возможно, умение жонглировать камешками облегчит вам это занятие.
3. Враг моего врага
В начальной школе вычитание учат сразу после сложения. И в этом, безусловно, есть смысл: в обоих случаях применяется счет чисел, только при вычитании он выполняется в обратную сторону. Психологически действия тоже похожи: ребенок учится брать и давать примерно в одно и то же время. Сложение и вычитание всегда идут рука об руку. Если человек готов посчитать, сколько будет 23 + 9, то не сомневайтесь, он скоро ответит и на вопрос, сколько будет 23 – 9.
Но если углубиться в эту тему, то в отличие от сложения вычитание создает довольно неприятную проблему, поскольку в результате могут появиться отрицательные числа. Если я захочу взять у вас 6 булочек, а у вас их только 2, то в реальности у меня ничего не получится. Зато в уме я навешу на вас 4 отрицательные булочки, что бы это ни значило.
Вычитание заставляет нас расширить свое представление о числах. Отрицательные числа более абстрактны, чем положительные. Четыре отрицательные булочки не потрогаешь и не съешь, зато их можно представить. Самое интересное, что в реальном мире отрицательные числа тоже встречаются: долги, перерасход по кредитной карте, минусовые температуры зимой и обозначения подвальных уровней на крытых парковках.
Многие из нас пока еще не заключили мир с отрицательными числами. Как заметил мой коллега Энди, люди придумали всевозможные забавные мелкие уловки, чтобы обойти страшный отрицательный знак «минус». В отчетах паевых инвестиционных фондов потери (отрицательные числа) печатаются красным или заключаются в круглые скобки, чтобы минусы ни в коем случае не появились. В исторических книгах сказано, что Юлий Цезарь родился в 100 году до н. э., а не в –100 году. Подземные уровни парковки часто обозначаются как B1 и B2. Температура — одно из немногих исключений, когда люди действительно говорят, что она составляет –5 градусов, хотя и в этом случае многие предпочитают фразу «5 градусов ниже нуля». Видимо, в отрицательном знаке есть нечто отталкивающее и… негативное.
Возможно, самое неприятное заключается в том, что при перемножении двух отрицательных чисел получается положительное число. Поэтому позвольте привести доводы в защиту знака минус.
Как нам определить ценность такого выражения, как –1 × 3, где мы умножаем отрицательное число на положительное? Ну хорошо, так как 1 × 3 означает сумму 1 + 1 + 1, естественно представить –1 × 3 как (–1) + (–1) + (–1), что равняется –3. Это должно стать очевидным в примере с деньгами: если вы должны мне 1 доллар в неделю, то по истечении трех недель вы мне будете должны 3 доллара.
Отсюда уже недалеко до понимания, почему минус, умноженный на минус, дает плюс. А теперь взгляните на следующий ряд равенств:
–1 × 3 = –3
–1 × 2 = –2
–1 × 1 = –1
–1 × 0 = 0
–1 × –1 =?
Посмотрите на числа в правой части равенств и удостоверьтесь в том, что это обычная прогрессия: –3, –2, –1, 0... На каждом шаге мы добавляем 1 к предыдущему числу. Таким образом, разве не логично, что следующим числом будет 1?
Это один аргумент в пользу того, почему (–1) × (–1) = 1. Привлекательность такого толкования заключается в том, что оно позволяет сохранить правила обычной арифметики — получается, что они верны как для положительных, так и для отрицательных чисел.
Но если вы бесчувственный прагматик, то, вероятно, будете удивлены, что у этих абстракций есть некие параллели в реальном мире. По общему признанию, жизнь иногда играет по различным правилам. В обычных этических построениях два заблуждения не приводят к истине. Более того, двойные отрицания не всегда равнозначны утверждению; они могут усилить отрицание, как в случае с «Я не могу получить никакого удовлетворения». (Действительно, в этом отношении язык может быть очень мудреным. Выдающийся британский философ и лингвист Дж. Остин из Оксфорда как-то в своей лекции заявил, что во многих языках двойное отрицание дает утверждение, но ни в одном дважды повторенное утверждение не дает отрицания. На что сидевший в аудитории философ из Колумбии Сидни Мордженбессер ехидно процедил: «Да-да».)
Тем не менее есть немало случаев, когда реальный мир действительно отражает правила умножения отрицательных чисел. Например, возбуждение одной нервной клетки может быть подавлено возбуждением второй нервной клетки. Если в этот момент возбуждение второй нервной клетки подавляется третьей нервной клеткой, то первая клетка может снова возбудиться. Косвенное воздействие третьей клетки на первую вызывает ее возбуждение. Таким образом, последовательность двух отрицаний приводит к утверждению. Подобные эффекты происходят и при регуляции генов: белок может включить ген, блокируя другую молекулу, которая подавляла этот отрезок молекулы ДНК.
Возможно, самую понятную параллель можно провести в социально-политической сфере. Как утверждает пословица, «враг моего врага — мой друг». Общеизвестно, что понятия вроде «друг моего врага», «враг моего друга» и тому подобные можно подставить в виде треугольника отношений.6
В углы треугольника помещают людей, компании или страны, а соединяющие их стороны показывают отношения между ними, которые могут быть как позитивными, или дружественными (обычно отображаются сплошными линиями), так и негативными, или враждебными (отображаются пунктирными линиями).
Социологи строят треугольники, подобные треугольнику слева, то есть считая отношения между объектами позитивными, так как разумно любить друзей ваших друзей. Точно так же треугольник справа, с двумя негативными и одной позитивной связью, считается сбалансированным, потому что такая комбинация не вызывает разногласий, даже несмотря на две стороны с негативными связями, поскольку ничто так не цементирует дружбу, как ненависть к одному и тому же человеку.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.