Виктор Млечин - На передних рубежах радиолокации Страница 33

Тут можно читать бесплатно Виктор Млечин - На передних рубежах радиолокации. Жанр: Разная литература / Военное, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Виктор Млечин - На передних рубежах радиолокации читать онлайн бесплатно

Виктор Млечин - На передних рубежах радиолокации - читать книгу онлайн бесплатно, автор Виктор Млечин

Перейдём теперь от обобщающих задач кибернетики к проблемам радиолокации и противорадиолокации. Здесь я должен заметить, что весь приведённый ниже материал имеется в открытых публикациях, и все непростые усилия автора были направлены на поиск и компоновку добытых сведений и представлении их в возможно более доступном виде для широкого читателя.

Начнём со свойств радиолокационных сигналов, в том числе сигналов, отражённых от радиолокационных целей. Вообще, сигнал является средством передачи информации от одного объекта к другому. Сигнал передаёт сообщения по каналу связи. Мера количества информации, передаваемых сигналом, зависит от вероятностей поступления сообщений. Если одно из n поступающих сообщений достоверно (с вероятностью единица), а вероятности поступления других (n – 1) сообщений соответственно равны 0 (т. к. р1 + р2 + … + рn = 1), то среднее количество информации равно нулю. Численно количество информации определяется суммой произведений вероятности сообщения на её логарифм. Основанием логарифма является число два, в физике часто используются натуральные логарифмы. При двух равновероятных событиях р1 = р2 = р = 0,5, количество информации

Н = – р1log2p1 – р2log2p2 = 1 бит.

Генерируемый передатчиком РЛС сигнал в простейшей форме (известной нам из основ тригонометрии) может быть представлен с помощью одной из гармонических функций (Sin или Cos) в виде u(t) = ACos(ωt + φ), где А – амплитуда сигнала, ω – частота, t – время, φ – фаза. В написанном виде сигнал относится к непрерывным сигналам, ибо время t пока ничем не ограничено, а параметры сигнала постоянны. Однако параметры гармонического сигнала могут со временем меняться по тому или иному закону или, как говорят в радиотехнике, модулироваться. Например, амплитуда А может быть промодулирована около некоей постоянной величины А0, т. е. А(t) = А0 + AmSinΩt, где обычно Ω < ω, а глубина модуляции Am << А0. Но модуляция амплитуды может иметь и 100 % глубину. Так, если произвести амплитудную модуляцию исходного сигнала периодической последовательностью импульсов длительностью τ и частотой повторения F, получим вместо непрерывного импульсный радиосигнал, состоящий из набора высокочастотных импульсов с указанными длительностью и частотой следования. Аналогичным образом может модулироваться частота сигнала ω = ω(t0) или его фаза φ = φ(t). Могут быть и смешанные модуляции, например по амплитуде и частоте.

Радиолокационным сигналам и методам их модуляции посвящена большая литература[20], с которой пытливый читатель может ознакомиться. Мы здесь скажем о другом. Модуляция, которой наделён радиолокационный сигнал на передающем конце канала связи, может быть извлечена на приёмном его конце с помощью детектирования. Амплитудный детектор позволяет получать информацию, заложенную при амплитудной модуляции. Так, на его выходе образуется импульсное или постоянное напряжение в зависимости от того, какой сигнал принят: импульсный или непрерывный. Для выделения из принятого сигнала частотной модуляции (ЧМ) используются частотные детекторы, называемые также частотными дискриминаторами. Если сигнал имеет фазовую модуляцию (ФМ), то для его детектирования необходим фазовый детектор, обладающий двумя входами. На первый вход подаётся принятый ФМ сигнал, а на другой вход опорный сигнал с той же несущей частотой ω, но с постоянной фазой φ = φ0.

Но вот передатчик РЛС сформировал высокочастотный сигнал, который поступает в антенну. Задача антенны состоит в создании узкого луча, с помощью которого производится поиск и обнаружение цели, а затем определение её угловых координат. Чем более острый луч направлен на цель или, как говорят специалисты, чем меньше ширина диаграммы направленности антенны (ДНА), тем точнее измеряются координаты цели. Максимум ДНА определяет коэффициент усиления антенны. Однако антенна характеризуется и другими параметрами, такими как уровень боковых лепестков, секторы медленного поворота и быстрого качания луча, поляризация излучаемой волны.

Создаваемая антенной волна, падая на цель, рассеивается во всех направлениях, в том числе и в направлении на РЛС. Возникающее вторичное поле зависит от размеров и формы отражающего объекта – цели, от длины волны и её поляризации.

Остановимся сначала на понятии поляризации волны. Волна электромагнитного поля, распространяющаяся в той или иной среде, имеет определённым образом ориентированный вектор напряжённости электрического поля. В ряде случаев созданное поле имеет вертикально ориентированный вектор напряжённости Ā(t). Это означает, что в каждой точке распространения волны вектор Е(t) направлен по вертикали, а модуль (величина) вектора меняется во времени от положительного до отрицательного значения, и в обратном направлении со сверхвысокой частотой задающего колебания. Поле с такой ориентацией вектора Ā(t) называется вертикально-поляризованным. Аналогично, при горизонтально-ориентированном векторе напряжённости электрического поля имеем случай горизонтальной поляризации. Когда же вектор Ā(t) наклонён по отношению к осям координат, т. е. имеет составляющие по обеим осям, а фазы этих составляющих одинаковы, говорят, что поле линейно-поляризовано. При этом угол наклона результирующего вектора определяется соотношением амплитуд составляющих векторов. Наконец, если фазы и амплитуды ортогональных векторов различны, конец результирующего вектора описывает эллипс. Период возврата в любой фиксированной точке этого эллипса обратно пропорционален частоте задающего колебания. Компоненты эллиптически-поляризованной волны обычно записываются в виде вектор-столбца. При отражении волны от объекта (цели) энергия вертикально поляризованной компоненты переходит в энергию как вертикально-поляризованной, так и горизонтально-поляризованной составляющей поля. То же самое происходит и с энергией горизонтально-поляризованной компоненты падающего поля, при этом также появляются перекрёстные составляющие. Следовательно, в общем случае при отражении от объекта имеет место деполяризация падающей волны. Комплексные коэффициенты отражения составляют поляризационную матрицу рассеяния. Её произведение на вектор-столбец падающей волны позволяет получить компоненты отражённого поля.

Пусть РЛС излучает и принимает сигналы одной и той же поляризации. Отражающие свойства объекта в этом случае характеризуются отношением плотностей потока мощности отражённой волны (на входе РЛС) и падающей волны (у цели). Если умножить это отношение на 4πR2, где R – расстояние РЛС-цель, то получим эффективную площадь рассеяния цели σц, сокращённо называемую ЭПР. В качестве простейшего объекта, моделирующего процесс отражения, возьмём шар с диаметром Дш = 2rш. Если rш << λ, то волна огибает шар и преобладают дифракционные явления. При этом σц пропорциональна отношению Д6ш/λ4. С увеличением диаметра шара ЭПР изменяется сначала по затухающему колебательному закону (резонансная область), а затем когда rш >> λ, σц становится равной видимой площади шара, т. е. σц = πr2ш. Линейная поляризация подающего поля сохраняется у волны, отражённой от сферы. При круговой поляризации волна, отражённая от объекта идеальной сферической формы, меняет направление вращения на противоположное. Представляют интерес значения σц для сложных целей. Так, малый самолёт имеет до 5 м2, большой самолёт – до 50 м2, крупный корабль до 10 000 м2, человек ~ 1 м2. Для дальней радиолокации цели имеют в основном точечный характер. В случае ближней радиолокации необходимо учитывать реальные размеры объекта, и часто его представляют как пространственно-распределённую цель.

Перейдём теперь к проблемам обзора и обнаружению цели в РЛС. Начнём с однолучевого обзора. Если антенна РЛС формирует узкий иглообразный или веерообразный луч, то для обнаружения цели в заданной области пространства необходимо произвести сканирование по азимуту, углу места или последовательно по обеим координатам. Последовательный характер перемещения луча в пространстве является особенностью этого вида обзора. Наиболее простым является круговой обзор, при котором луч антенны вращается в азимутальной плоскости, многократно совершая полный оборот на 360°. При этом угловая скорость вращения луча РЛС должна выбираться с учётом поступления в РЛС необходимого числа отражённых от цели импульсов, что также зависит от ширины самого луча и частоты повторения импульсов. Обычно круговое вращение луча производится в медленном темпе так, что трудностей с получением требуемой пачки отражённых импульсов не возникает. Сложнее обстоит дело в случае секторного обзора, при котором для обеспечения слитной немелькающей картины отметок от целей на экране индикатора требуется повышенная скорость развёртки луча. При необходимости перекрытия рабочей зоны пространства игольчатым лучом в двух плоскостях более быстрое круговое вращение луча по азимуту сочетается с медленным перемещением по углу места. В сравнительно небольшом угломестном секторе скорость перемещения луча при этом не должна допускать потери цели. В секторном варианте сканирования имеет место растровый метод обзора в двух плоскостях. Игольчатый луч совершает быстрое движение по строкам и медленное по кадрам (в другой плоскости). Выбор быстрого движения производится по той координате, где требуется более высокая точность. Возможен и смешанный метод секторного обзора. Для этого используется антенный пост с двумя антеннами. Первая антенна имеет веерообразный луч с узкой диаграммой по азимуту, вторая антенна создаёт узкую диаграмму по углу места. Сканирование в антеннах производится в плоскости узких диаграмм. Каждый из операторов снабжён своим индикатором, где производится засечка целей с точным определением угловых координат и дальности. Для выбранной цели, имеющей одинаковую дальность засечки, на обоих индикаторах определяется азимут и угол места.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.