Идеи с границы познания. Эйнштейн, Гёдель и философия науки - Джим Холт Страница 3
Идеи с границы познания. Эйнштейн, Гёдель и философия науки - Джим Холт читать онлайн бесплатно
Предположим для живости и наглядности, что скорость света – 100 километров в час. Теперь предположим, что я стою на обочине дороги и вижу, как мимо пролетает с этой самой скоростью луч света. Затем я вижу, как вы едете вслед лучу на автомобиле со скоростью 60 километров в час. С моей точки зрения световой луч летит быстрее вас на сорок километров в час. Но получается, что вы за рулем машины видите, как световой луч улетает от вас со скоростью 100 километров в час, как будто вы стоите: этого требует принцип постоянства скорости света. А если вы надавите на газ и разгонитесь до 99 километров в час? Теперь я вижу, что свет мчится быстрее вас лишь на один километр в час. Но для вас в салоне машины луч по-прежнему улетает вперед со скоростью 100 километров в час, несмотря на то, что ваша скорость возросла. Как же так? Разумеется, скорость равна расстоянию, поделенному на время. Очевидно, что чем быстрее вы мчитесь в автомобиле, тем короче становится ваша линейка и тем медленнее тикают ваши часы относительно моих, иначе нам не достичь согласия по поводу скорости света. (Если бы я достал бинокль и посмотрел на ваш разгоняющийся автомобиль, то увидел бы, что его длина сократилась, а вы внутри движетесь будто в замедленной съемке.) Тогда Эйнштейн принялся соответствующим образом переформулировать законы физики. Чтобы сделать их абсолютными, он сделал время и расстояние относительными.
Особенно поражало, что он пожертвовал абсолютным временем. Исаак Ньютон считал, что время – самое объективное, универсальное и трансцендентное из всех природных явлений: «Абсолютное, истинное математическое время… безо всякого отношения к чему-либо внешнему протекает равномерно», – пишет он на первых страницах своих «Начал»[1]. Однако Эйнштейн понимал, что с нашей точки зрения время – лишь следствие из опыта взаимодействия с ритмичными явлениями: сердцебиением, вращением планет вокруг своей оси и по орбитам, тиканья часов. «Все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях. Если я, например, говорю: “Этот поезд прибывает сюда в 7 часов”, – то это означает примерно следующее: “Указание маленькой стрелки моих часов на 7 часов и прибытие поезда суть одновременные события”» («К электродинамике движущихся тел»[2]), – писал Эйнштейн в своей июньской статье. Если события происходят на каком-то расстоянии друг от друга, судить об одновременности можно, только посылая в обе стороны световые сигналы. Опираясь на эти основные принципы, Эйнштейн доказал, что мнение наблюдателя об «одновременности» двух событий зависят от его движения. Иначе говоря, никакого вселенского «сейчас» не существует. Когда разные наблюдатели делят хронологическую ось на прошлое, настоящее и будущее по-разному, из этого следует, что все моменты сосуществуют с равной вероятностью и одинаково реальны.
Выводы Эйнштейна были продуктом чистой мысли, возникшим из самых строгих предположений о природе вещей. Прошло больше ста лет с тех пор, как он их сделал, и теперь мы знаем, что их подтвердил целый ряд экспериментов. Однако когда Эйнштейн подал статью об относительности, изданную в 1905 году, как диссертацию, ее отклонили (и тогда он подал взамен апрельскую статью о размерах атомов, у которой, по его мнению, было меньше шансов отпугнуть экзаменаторов, и ее приняли, но лишь после того, как Эйнштейн добавил одно предложение, чтобы соответствовать требованиям об объеме текста). Когда в 1921 году Эйнштейн получил Нобелевскую премию по физике, ее присудили за работу о фотоэлектрическом эффекте. Шведская Академия запретила ему даже упоминать об относительности в нобелевской речи. Но вышло так, что Эйнштейн не смог попасть на церемонию в Стокгольм. Нобелевскую речь он прочитал в Гетеборге, а в первом ряду сидел король Густав V. Его величество пожелал узнать о теории относительности, и Эйнштейн повиновался.
∞
В 1906 году, через год после annus mirabilis, года чудес, Эйнштейна, в городе Брно (на территории нынешней Чешской Республики) родился Курт Гёдель. Ребенком Гёдель был и любознательным – родители и брат прозвали его «герр Варум» («господин Почему») – и нервным. В пять лет у него, судя по всему, было легкое тревожно-невротическое расстройство. В восемь он пережил тяжелейшую ревматическую атаку, после чего всю жизнь был убежден, что у него непоправимые нарушения работы сердца и это смертельно.
В 1924 году Гёдель поступил в Венский университет. Он собирался изучать физику, но вскоре его пленила своей красотой математика, особенно мысль о том, что абстракции вроде чисел и окружностей существуют вечно и неизменно, независимо от человеческого сознания. Это учение называется платонизм, поскольку происходит от теории идей Платона, и всегда было популярно среди математиков. Однако в венских философских кругах двадцатых годов платонизм считался безнадежно устаревшим. В богатейшей культуре венских кафе процветали всевозможные интеллектуальные направления, но наибольшую известность получил «Венский кружок» – группа мыслителей, объединенных представлением о том, что философию следует очистить от метафизики, переосмыслить и превратить в точную науку. Под влиянием Людвига Витгенштейна, невольно ставшего их гуру, члены Венского кружка стали считать математику игрой с символами, вроде шахмат, только сложнее. Они полагали, что утверждение наподобие «2+2=4» истинно не потому, что оно точно описывает какой-то абстрактный мир чисел, а потому, что его можно вывести в рамках логической системы в соответствии с определенными правилами.
Гёделя привел в Венский кружок его университетский преподаватель, однако о своих платонических воззрениях молодой человек предпочитал молчать. Он любил строгость во всем и не терпел споров, поэтому не хотел отстаивать свои воззрения, пока не разработает безупречного доказательства своей правоты. Но как доказать, что математику нельзя свести к логическим ухищрениям? Гёдель избрал тактику сверхъестественно хитрую и одновременно,
Жалоба
Напишите нам, и мы в срочном порядке примем меры.