Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре Страница 45
Космологические коаны. Путешествие в самое сердце физической реальности - Энтони Агирре читать онлайн бесплатно
Когда мы получали СОВЕТЫ ОТ ПОВАРА, мы описывали конкретную физическую систему — кухню — как набор состояний, что могут превращаться друг в друга при некоторой динамике. Мы видели и другие такие системы: летящую стрелу, падающий с башни шар, частицы, движущиеся в пространстве-времени в логове джинна, и так далее. Но взглянем на эту основную концепцию с более абстрактной точки зрения. Если мы обозначим буквой s одно состояние нашей системы, тогда s(t) будет состоянием системы в момент t. В падающем пушечном ядре, например, для определения s(t) нужны два числа: высота и значение направленной вниз составляющей скорости. Тогда s(t0) могло означать, что «пушечное ядро находится в состоянии покоя на высоте 100 метров», а состояние s(t1) через несколько секунд (в момент t1) могло бы соответствовать «пушечному ядру на высоте 45 метров, падающему со скоростью 30 метров в секунду».
Многие законы физики определяют правила, переводящие данное состояние в некоторый момент времени в состояние в другой момент. Давайте присвоим символ U всей процедуре, в соответствии с которой это делается. Рассуждение о пушечном ядре привело Галилея к пониманию того, что, если мы пренебрегаем сопротивлением воздуха, падающие объекты подчиняются особому правилу, устанавливающему, что направленная вниз скорость в течение каждой секунды возрастает на определенную величину (около 10 м/сек). Включенное в U, это правило позволяет по заданной в момент t0 высоте объекта и вертикальной составляющей скорости вычислить высоту и вертикальную составляющую скорость в любой последующий момент времени[61]. Вообще говоря, в классической механике U означает хотя и нечто гораздо более сложное, но в принципе похожее: нужно взять все частицы, рассчитать межчастичные силы и все траектории частиц, чтобы найти их положения и скорости в более поздние моменты времени; то есть это та самая процедура, которую джинн собирался использовать, чтобы узнать, как состояние мира эволюционирует от одного состояния к другому.
Когда у нас есть абстрактное понятие о состояниях s(t) и правило U, по которому развивается их эволюция (рис. ниже), можно в общем виде сформулировать и базовые свойства, которые должно иметь U, и те свойства, которые оно иметь не должно. Сосредоточимся на двух, особенно важных для разрешаемых нами вопросов.
Первое свойство — детерминизм: действительно ли из данного начального состояния следует, что при данном выборе более позднего момента времени в системе возникает единственное и неповторимое состояние? Высота нашего падающего пушечного ядра определенно обладает этим свойством: если мы введем текущую высоту пушечного ядра, скорость и интервал времени в соответствующую формулу и вычислим по этой формуле новую высоту, то мы получим одно-единственное значение. Классическая механика в общем случае обладает этим свойством — как и утверждал джинн. Им же будут обладать многие правила и алгоритмы, которые вы могли бы придумать.
Идеализированное пространство состояний системы.
Эволюционное правило U переводит любое состояние в момент t0 в соответствующее состояние в более поздний момент времени t1.
Второе свойство — унитарность, которую грубо можно определить как «обратимость». Если задано U, существует ли обратная процедура, позволяющая по данному состоянию в определенный момент времени восстановить состояние в начальный момент времени? Иными словами, можете ли вы повернуть часы вспять или перемотать назад ленту, безошибочно восстановив прежнее состояние? Что касается нашего пушечного ядра, то ответ — «да». Эта процедура соответствует перехватыванию на определенной высоте ядра, летящего с определенной скоростью вниз, и подбрасыванию его с той же скоростью вверх. Ядро при этом должно оказаться в точности на вершине башни. В классической механике, вообще говоря, обратная процедура соответствует движению классической частицы по той же самой траектории, по которой она двигалась через пространство-время, но назад.
Если в общем случае такой унитарный оператор существует для физических законов, то это значит, что прав Ленни Сасскинд, писавший: «В принципе вы всегда можете достаточно внимательно присмотреться к объектам и определить с бесконечной точностью, что с ними происходило раньше, прокрутив их историю в обратном направлении»[62]. Труды Платона и Гипатии в действительности не потеряны, поскольку траектории всех частиц, из которых состояли папирусные свитки, можно в принципе направить в обратном направлении для того, чтобы реконструировать исходные книги. Даже если бы нам пришлось сжечь одну из книг Платона, дым, пепел и тепло, состоящие из атомов, фотонов и прочего, все равно подчинялись бы правилу унитарности, как и вся окружающая книги среда. Хотя на практике, скорее всего, восстановить книгу невозможно — в силу тех же самых обстоятельств, которые мешают джинну точно предсказать будущее, — книги все-таки останутся здесь, с нами, закодированные и впечатанные в текущее состояние Вселенной (так же как и спрятанное там, по утверждениям джинна, будущее). Ничто не будет утеряно бесследно.
Но описание мира не ограничивается классической физикой. Что если мы опишем мир с помощью квантовой механики (а мы обязательно должны это сделать, если хотим быть добросовестными)? Или же что будет, если мы станем описывать мир классически, но допустим (и это мы тоже должны сделать!), что у нас есть некоторая неопределенность при описании состояния, в котором мир находится? В обоих случаях мы обнаруживаем очень хитрую и интересную комбинацию: мир, какой он есть, в некоем смысле одновременно унитарный и детерминистский и не унитарный и не детерминистский!
Возьмем классическую систему, для которой мы знаем только вероятности состояний — например, пятидесятипроцентную вероятность того, что кость находится на высоте 10,1 см над столом, и такую же вероятность того, что кость находится на высоте 10,2 см. Мы можем обозначить их как P(s) — вероятность, приписываемая каждому состоянию s. Теперь, если мы посмотрим на кость (быстро и внимательно) и увидим, что с большой вероятностью она находится на высоте 10,2 см, мы сможем считать, что, скажем, P(10,2 см) = 99 %, а P(10,1 см) = 1 %. Это изменение в P(s) было скачкообразным и непредсказуемым по определению, так как если бы мы могли это предсказать, то не стали бы вначале приписывать этим состояниям пятидесятипроцентные вероятности. И когда мы уже получили вероятности после наблюдения, у нас не осталось никакого способа (кроме, разве что, воспоминания) «восстановить» тот факт, что сначала неопределенность считалась нами равной 50–50 или 25–75 либо какой-нибудь еще. Таким образом, мы обнаружили и недетерминизм, и неунитарность.
Аналогично, мы видели, что квантовая механика — недетерминистская наука в смысле измерений свойств системы: когда вы задаете системе вопрос, на который у нее нет определенного ответа,
Жалоба
Напишите нам, и мы в срочном порядке примем меры.