Искусство большего. Как математика создала цивилизацию - Майкл Брукс Страница 7

Тут можно читать бесплатно Искусство большего. Как математика создала цивилизацию - Майкл Брукс. Жанр: Разная литература / Зарубежная образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Искусство большего. Как математика создала цивилизацию - Майкл Брукс читать онлайн бесплатно

Искусство большего. Как математика создала цивилизацию - Майкл Брукс - читать книгу онлайн бесплатно, автор Майкл Брукс

+ P = 5 (A + D)

Эти уравнения устанавливают числовые отношения между всеми неизвестными, и Фибоначчи утверждает, что задача имеет целый ряд решений, но минимальные значения таковы: “У второго – 4, у третьего – 1, у четвертого – 4, в кошельке – 11, а дебет первого – 1”. Любопытно, что здесь появляется понятие “дебет”. Фибоначчи подчеркивает, что “задача не имеет решения, если не допустить, что у первого человека может быть дебет”, и показывает, что наличие дебета предполагает осуществление арифметических действий с отрицательными числами.

Хотя, написав книгу, Фибоначчи сумел распространить некоторые математические идеи в европейской среде, с отрицательными числами у него почти ничего не вышло. Запад не принимал их еще несколько сотен лет. Так, французский математик Блез Паскаль полагал, что, если вычесть 4 из 0, получится 0, – и презрительно отзывался обо всех, кто считал иначе. В своих “Мыслях” он сказал: “Я знаю людей, которые не могут понять, что если от нуля отнять четыре, останется ноль”[24]. И это в середине XVII века, в эпоху микроскопов, телескопов, законов Ньютона и электричества. Даже в период научных открытий и появления технологических инноваций некоторые из лучших западных умов не желали признавать существование отрицательных чисел.

Ситуация начала меняться, лишь когда Джон Валлис, Савильский профессор геометрии Оксфордского университета, понял, что людям думается проще, когда они могут представить картину происходящего. В 1685 году он опубликовал “Трактат по алгебре”, в котором выстроил числа в ряд и позволил им уйти в отрицательную область. Он отметил, что в абстрактной форме осознать это сложно. Но если представить какую-нибудь физическую величину, например расстояние, все сразу станет понятно. Разумеется, он выразился несколько иначе. Вот его слова:

Нельзя, однако, сказать, что гипотеза (об отрицательных числах) бесполезна или абсурдна, если правильно ее трактовать. Хотя в чисто алгебраической записи она добавляет величину, которая меньше нуля, в физическом приложении она обозначает величину столь же реальную, как если бы знаком ее был +, только трактуемую в противоположном смысле[25].

Иными словами, это положительное число наоборот. По сути, так бы сказали и мы. В качестве “физического приложения” он измеряет расстояние по прямой от заданной точки, а затем обратно – и дальше. Он спрашивает, как далеко от стартовой позиции окажется человек, если отойдет на 5 ярдов от точки A, а затем вернется на 8 ярдов назад. Он получает ответ –3, который, несомненно, дали бы и вы.

Числовая прямая Джона Валлиса

Любопытно читать длинное объяснение, сопровождающее утверждение Валлиса. “Получается, что он прошел на три ярда меньше, чем ничего”, – говорит он и пускается в рассуждения, всячески разжевывая свою мысль. Если сегодня для ответа достаточно было бы поставить галочку в нужной клетке детского задачника, то Валлис прикладывает немало усилий, чтобы разложить все по полочкам, и еще на целых 17 строк расписывает значимость ответа –3. Он явно понимал, насколько радикальна его мысль.

Сегодня знак минуса кажется нам лишь камешком в гигантской пирамиде математических инструментов. Мы настолько привыкли к нему и так хорошо понимаем его смысл, что теперь нам сложно увидеть в нем принципиальную инновацию. Признание существования отрицательных чисел не только дало нам способ подсчитывать долги, но и позволило простым и естественным образом математически описывать множество различных явлений. К примеру, физические силы: работая с положительными и отрицательными числами, мы можем прогнозировать дальность полета артиллерийских снарядов с учетом гравитации. Мы также можем возводить крепкие, устойчивые архитектурные сооружения, в которых будут сбалансированы все силы и нагрузки. Всякий раз, когда друг другу противостоят две вещи – космический корабль и сила тяготения, доход и расход, ветер в парусах и сопротивление океана, которое судну приходится преодолевать, рассекая волны, – отрицательные числа упрощают расчеты.

Однако, несмотря на силу отрицательных чисел, одни они не могли подарить нам современный мир. Возможно, вы заметили, что на числовой прямой Валлиса нет чисел – есть лишь отрезки, отмеченные буквами A, B, C и D. Буквы соответствуют тому, что мы обозначили бы числами 0, 5, 3 и –3, и Валлис неспроста решил отказаться от них. Еще один важнейший математический инструмент – ноль – пока не получил признания.

Значимое ничто

История нуля восходит к моменту, когда царь Шульги ввел в своем математическом государстве “позиционную систему счисления”. Мы очень быстро усваиваем, что, записывая число, такое как 1234, мы можем присваивать отдельным цифрам разные значения в зависимости от того, какую позицию они занимают. Низшую позицию здесь занимает цифра 4, которая обозначает четыре элемента, например четыре яблока. Если выражаться математическим языком, наша система имеет основание 10 и называется десятичной, поскольку мы группируем числа в десятки, и потому цифра в следующей позиции обозначает три десятка, то есть 30. Двигаясь дальше влево, мы получаем результат умножения предыдущей позиции на десять, то есть десять десятков, или сотню. В числе 1234 их две. Наконец, остается одна группа из десяти сотен, то есть тысяча. В итоге получается число 1234.

Позиционная система счисления царя Шульги была шестидесятеричной, а не десятичной. Сложно сказать, почему именно такая техника записи чисел обрела в древности такую популярность. Одни историки математики видят причину в том, что число 60 дает целые частные при делении на любое из целых чисел с 1 до 6 (и еще на шесть чисел). Благодаря этому с ним легко работать, особенно при делении товаров, цен и мер. Другие предполагают, что удобство шестидесятеричной системы объясняется примерным числом дней в году. Какой бы ни была причина, эта система оставила наследие: именно в ближневосточных царствах, которые в итоге образовали Вавилон, круг разделили на 360 градусов, градус и час – на 60 минут, а минуту – на 60 секунд.

Вавилонская шестидесятеричная система похожа на нашу десятичную: например, число 34 в ней записывается тремя символами, обозначающими десятки, и четырьмя символами, обозначающими единицы. Но условных знаков в ней хватает лишь для записи чисел до 59, поэтому десятичное число 424 000 в шестидесятеричной системе состояло бы из сорока единиц, 46 групп по шестьдесят, 57 групп по шестьдесят на шестьдесят (602) и 1 группы по шестьдесят на шестьдесят на шестьдесят (603).

Такая запись (как и наша) удобна, пока в числе нет отсутствующих “групп”. Но как же записать в десятичной системе число 4005, в котором нет ни сотен, ни десятков? Нам нужно было найти способ обозначать “отсутствие” при записи числа. Так мы и начали

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.