Операция Двойник – Тайны рейса МН17 - Дмитрий Леонидович Утробин Страница 6
Операция Двойник – Тайны рейса МН17 - Дмитрий Леонидович Утробин читать онлайн бесплатно
Для того, чтобы понять, где взорвалась ракета, я нанес траектории вхождения поражающих элементов на фото выкладки «Боинга». К большому моему сожалению, правообладатели этих снимков продают лишь редакционные права, и по этой причине я не могу опубликовать их в своей книге, тем более, с внесенными изменениями. Мне пришлось перенести их на схематическое изображение передней части «Боинга», и вам придется довольствоваться тем, что есть. Вид сбоку (см. схему 1). Как видим, единого центра не получается. Это еще одно подтверждение того, что по «Боингу» стрелял не «Бук». Диффузия, растяжение центра взрыва характерна для слабомощных боеголовок, у которых скорость частиц соотносима со скоростью полета поражаемой цели. Попробую объяснить на примере ЗУР 9М38М1 («Бук»). Стальные «болванчики», которыми начинялась ее боевая часть, как мы уже знаем, имели разные размеры и массу. Ускорение же, придаваемое им взрывом, напрямую зависит от соотношения «сечение/вес». Чем больше площадь, на которую оказывает давление взрыв, тем большую движущую силу получит элемент. Масса его оказывает, наоборот, отрицательное воздействие на скорость полета. По этому параметру преимущество имеют элементы средней фракции. В боеголовке 9Н314М1 они выложены в переднем ряду. Во внутреннем контуре находятся только крупные и малые параллелепипеды, имеющие меньшее соотношение «сечение/вес». После разделения боевой части на отдельные частицы их полет будет подчиняться совсем другим закономерностям, описываемым уравнениями внешней баллистики. Учитывая то, что расстояние до цели в момент взрыва у зенитных ракет обычно минимальное, решающее значение будут иметь стартовые условия. В качестве примера представим себе, что боеголовка взорвалась над относительно ровной поверхностью крыла. ПЭ придут к нему двумя волнами. Сначала – первый ряд, затем – второй. Если объект атаки неподвижен, это особого значения не имеет. Все траектории сойдутся в единой точке. На самом деле, когда имеешь дело с боеприпасами большого размера, о точке, где пересекаются линии полета частиц можно говорить лишь условно. Более правильно ее будет назвать областью их максимального схождения. И она не совпадает с центром взрыва. Но для удобства мы все же будем считать, что все траектории сходятся в центральную часть боеголовки. Если атакуемый объект находится в полете, то за время, проистекшее от прихода первой до прилета второй волны осколочного поля, крыло успеет сдвинуться в пространстве на какое-то расстояние. И в этом случае линии сойдутся не в одной, а в двух точках (см. верхние два рисунка схемы 2). Чем меньше разница в скорости у поражаемой цели и высокоэнергетических частиц, тем больше будет расстояние между ними. Введем в условия задачи энергию взрыва. Область высокого давления, образующая вокруг него, будет стремиться оттолкнуть от ракеты воздушное судно, изменить его курс и тангаж[6]. По приходу второй волны крыло будет иметь смещение не только линейное, но и радиальное (см. нижние два рисунка). Благодаря этому условные центры разойдутся еще сильней.
Схема 2. Воздействие осколочного поля на поверхность крыла.
Схема 3. Воздействие осколочного поля на фюзеляж.
Рассмотрим другой вариант, когда удар пришелся по фюзеляжу самолета, имеющему цилиндрическую форму. Здесь длина пути каждой частицы будет зависеть еще и от того, на какую часть обшивки пришелся ее удар. А чем короче путь ПЭ, тем быстрее он доберется до цели, и тем меньшее смещение линейное и радиальное будет у атакуемого объекта. В этом случае свести все траектории к единой точке не получится даже в рамках одной волны. Кабина пилотов, куда пришелся основной удар по рейсу МН17, имеет еще более сложную форму. И длина пути у частиц здесь различается существенно.
Свои коррективы вносит и деформация обшивки лайнера, из-за чего некоторые из них на схеме 1 отображаются не совсем корректно. Тем не менее, к каким-то выводам можно прийти и на основании этого кажущегося хаоса. Обратим внимание на линии, выделенные на ней зеленым и красным цветом. Направление их различается примерно на 70°-80°, что доказывает невозможность оставления всех пробоин одной ракетой. Иначе получалось бы, что лайнер от взрыва ее боевой части за какие-то мизерные доли секунды успел перевести свой горизонтальный полет в крутое пике. Такое просто невозможно! А значит, рейс МН17 был атакован как минимум двумя ракетами.
Для подтверждения давайте посмотрим на пострадавший лайнер сверху. К сожалению, большая часть крыши кабины пилотов и вообще всей передней части самолета в выкладку не вошла. За неимением ничего иного, нам придется довольствоваться хорошо сохранившимся полом кокпита. В моем распоряжении есть фотографии наиболее пострадавших от внешних воздействий его участков. Пробоины в нем наш голландский друг сфотографировал очень крупно. Снимки вышли четкими. Отлично различимы даже мельчайшие царапины. Это дает шанс, относительно точно определить углы вхождения ПЭ.
Участок №1 (под креслом КВС – левая сторона кабины). Большая часть высокоэнергетических частиц, пробивших его, входили в поверхность почти отвесно. И определить точно углы подлета их сложно. Мы можем лишь констатировать, что все они пришли из передней верхней полусферы. Исключение составляют две пробоины с более пологой траекторией.
Участок №2 (под правой педалью КВС). Два поражающих элемента, срикошетивших от пластика подножки, летели по расходящимся траекториям.
Участок №3. Точное его местонахождение неизвестно. Скорее всего, он располагался где-то перед креслом КВС. Здесь видны два пулевых рикошета, о взрыве боевой части ЗУР не говорящие ничего.
Участок №4 (слева от кресла КВС). Две высокоэнергетические частицы входили в него практически параллельно.
Участок №5 (слева от кресла КВС). Несмотря на то, что все поражающие элементы пробивали пол под крутым углом, определить направление их полета не сложно. В этом нам помогут хорошо различимые входные бороздки.
Участок №6. Люк доступа к авионике находился сзади кресла второго пилота. Есть пулевая пробоина. Траектории полета нескольких частиц, сошедшихся в одном месте в полу, не определены. Понятно лишь, что они летели откуда-то спереди и сверху. Для двух отверстий это возможно.
Участок №1. Фото Jeroen Akkermans (исправлена перспектива, изменен размер, нанесена разметка).
Участок №2. Фото Jeroen Akkermans (нанесена разметка).
Участок №3. Пулевые рикошеты. Фото Jeroen Akkermans (исправлена перспектива, изменен размер, нанесена разметка).
Участок №4, траектории параллельны друг другу. Фото Jeroen Akkermans (исправлена перспектива, изменен размер, нанесена разметка).
Участок №5, три верхние траектории параллельны друг другу. Фото Jeroen Akkermans (исправлена
Жалоба
Напишите нам, и мы в срочном порядке примем меры.