Сергей Доронин - Квантовая магия Страница 14

Тут можно читать бесплатно Сергей Доронин - Квантовая магия. Жанр: Религия и духовность / Эзотерика, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Сергей Доронин - Квантовая магия читать онлайн бесплатно

Сергей Доронин - Квантовая магия - читать книгу онлайн бесплатно, автор Сергей Доронин

1.7. Квантовая теория и телепатия. Квантовая логика

В современной квантовой теории есть еще одно интересное и, я бы сказал, занимательное направление, связанное с коммуникацией и мгновенной передачей информации по квантовому каналу связи на основе квантовой запутанности[40]. Это направление занимается играми, точнее, выигрышными стратегиями при наличии квантового канала, например, между двумя игроками, в то время как другая пара игроков связана обычным классическим каналом.

Неплохой обзор научных публикаций, посвященных этому направлению квантовой теории, — G. Brassard, A. Broadbent, A. Tapp, Quantum Pseudo-Telepathy, arXiv: quant-ph/0407221 (22 Nov., 2004) http://ru.arxiv.org/abs/quant-ph/0407221.

Я остановлюсь на нем чуть подробнее.

Авторы называют квантовый канал связи между двумя игроками «псевдотелепатией». В аннотации они пишут: «Псевдотелепатия — удивительное приложение квантово-информационных технологий к коммуникации. Благодаря запутанности, возможно, самой неклассической манифестации квантовой механики, два или более квантовых игроков могут выполнять распределенную задачу без потребности в связи вообще, что было бы невозможным подвигом для классических игроков».

Как осторожно замечают авторы, вспоминая при этом эзотерику: «В этом случае телепатия, казалось бы, была не хуже, чем любое другое эзотерическое „объяснение“, не так ли?» И чуть далее: «Этот феномен мы называем „псевдотелепатией“, потому что он показался бы столь же магическим, как „истинная“ телепатия, классическому физику, но все же он имеет полностью научное объяснение — квантовую механику».

То, что раньше казалось «сверхъестественным» с точки зрения классической физики[41], в рамках квантовой теории получает естественное объяснение, и, более того, квантовая механика предоставляет инструменты для количественного описания этих явлений.

Авторы обзора подчеркивают, что основной целью анализа псевдотелепатических игр является их экспериментальное приложение к изучению нелокальной природы окружающего мира и телепатии как одного из проявлений квантовой нелокальности.

Раздел 1.3 статьи называется «Какие убедительные эксперименты могут быть проведены?» Здесь говорится: «Основная мотивация для изучения игр псевдотелепатии заключается в том, что их физическая реализация обеспечивает наиболее убедительные и свободные от обходов демонстрации того, что физический мир не является локально-реалистическим».

Авторы подробно останавливаются на тех условиях, которые необходимо выполнить (обеспечить), чтобы исключить сомнения в правильности результатов экспериментов по телепатии. Речь идет о том, как убедить «заядлого любителя детерминизма», что классическая физика «is wrong» — ущербна, увечна, что ей нельзя доверять, что она является отклонением от истины, упрощением и искажением нелокальной основы реальности.

Во втором разделе статьи авторы делают обзор наиболее широко известных к настоящему времени псевдотелепатических игр. Они начинают с известной статьи Кохенаи Шпекера[42], которую часто называют одной из ключевых работ в процессе становления квантовой логики. Кохен и Шпекер пытались с помощью скрытых переменных свести квантовую логику к классической, то есть делали попытку перевести язык квантовой логики на язык классических теорий — булеву алгебру. Они показали, что это невозможно сделать, построив свой знаменитый контрпример — граф из 117 точек.

Таким образом, квантовая логика тесно переплетается с телепатическими играми квантовой теории.

Привычная для нас классическая логика является лишь частным случаем квантовой и справедлива для незначительной части реальности, описываемой классической физикой. Моментом зарождения квантовой логики как самостоятельного направления в квантовой теории можно считать 1936 год, когда Бирхгови фон Нейман опубликовали статью «Логика квантовой механики»[43].

Хотя чуть раньше, в 1932 году, фон Нейман в своей знаменитой книге «Математические основы квантовой механики»[44] уже обратил внимание на возможность существования особой квантовой логики, обобщающей логику классическую: «Наряду с физическими величинами R существует еще нечто, являющееся предметом физики: именно альтернативные свойства системы L». То есть предметом физики являются не только некоторые конкретные физические величины, полученные при измерении, но и вся совокупность «непроявленных» результатов — тех, которые могли иметь место, но в данном случае не были реализованы.

Основное отличие квантовой логики от классической заключается в том, что в ней состояния физической системы определяются не только конкретными значениями связанных с системой наблюдаемых, но и всей совокупностью альтернативных свойств системы (суперпозицией состояний).

Квантовая логика существенно отличается от булевой. Например, не выполняется закон дистрибутивности в его общей форме. Дистрибутивность операций имеет место лишь для некоторых отдельных множеств, заданных на так называемых совместимых подпространствах гильбертова пространства. Дистрибутивный закон справедлив для попарно совместимых подпространств. С набором совместимых подпространств можно связать проекционные операторы и построить наблюдаемые, которые будут попарно коммутировать, и их можно представить как функцию одного оператора, то есть им соответствуют одновременно измеряемые величины[45].

Квантовая логика сейчас еще только разрабатывается, и пока трудно оценить все возможные последствия нового мышления, но одно несомненно — они будут очень значительны.

В этом отношении многое делается математиками, которые сейчас интенсивно работают над квантовыми алгоритмами и программами для квантового компьютера. Им в какой-то мере проще — не надо думать о физических ограничениях «на железо». Как только появится квантовый компьютер «в железе», у математиков уже будет в запасе большое количество готовых квантовых алгоритмов и программ.

Для реализации квантовых алгоритмов нужно небольшое число логических квантовых операторов (гейтов): однокубитные — NOT (логическое «Не»), преобразование Адамара (перевод кубита в нелокальное суперпозиционное состояние); двухкубитные — CNOT (контролируемое «Не»), SWAP (обмен состояниями) — и этого будет достаточно. С их помощью можно реализовать любые алгоритмы — не только классические, но и квантовые, которые реализуют квантовую логику.

1.8. Телепортация и обращение времени

С квантовой нелокальностью и мгновенной передачей информации тесно связаны вопросы телепортациии обращения времени. В 1993 году появилась статья, опубликованная Ч. Беннеттом с соавторами[46], которая имела весьма необычное название для научной публикации в солидном физическом журнале: уже в самом заголовке употреблялся непривычный для физиков термин «телепортация» — «Телепортация неизвестных квантовых состояний через двойной, классический и ЭПР-канал» («Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels»). Эта работа иногда считается отправной точкой современного прикладного этапа в развитии квантовой механики, в частности, теории запутанных состояний и квантовой теории информации.

К настоящему времени проведено очень много экспериментов по квантовой телепортации. Из последних работ в этой области можно упомянуть эксперимент группы А. Цайлингера по реализации квантовой телепортации через Дунай, то есть на довольно большом расстоянии (600 м). Его результаты опубликованы в Nature[47].

Как пишут авторы: «Наш результат — шаг к построению квантового повторителя, который даст возможность чистой запутанности быть разделенной между отдаленными сторонами в окружающей среде».

Суть экспериментов по телепортации несложная. Если описать ее упрощенно, она будет выглядеть так: допустим, у нас есть частица 1 и запутанная пара частиц 2–3 (типа ЭПР-пары). Объединяя частицы 1 и 2 (измеряя в белловском базисе), то есть переводя пару 1–2 в максимально запутанное состояние типа того, которое было раньше у пары 2–3, состояние 3 становится таким, каким было раньше состояние 1, поскольку общее состояние трех частиц не меняется. Таким образом, частица 1 как бы телепортируется на место частицы 3, другими словами, частица 3 приобретает свойства частицы 1.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.