Сергей Доронин - Квантовая магия Страница 18
Сергей Доронин - Квантовая магия читать онлайн бесплатно
Как отмечают философы (в частности, А. Л. Симанов), следующая ошибка рассматриваемого толкования понятия «состояние» в квантовой механике — противопоставление общего и единичного. Открытым остается вопрос о природе состояния квантовомеханического объекта и в интерпретации Эйнштейна-Мандельштама-Блохинцева, согласно которой квантовая механика изучает поведение не индивидуальной микрочастицы, а совокупности большого числа этих частиц и совокупности систем частиц. А. Эйнштейн[55] писал, что ψ-функция «ни в коем случае не описывает состояние, свойственное одной-единственной системе; она относится скорее к нескольким системам, то есть к „ансамблю систем“».
Иначе говоря, ψ-функция является характеристикой состояния большого числа однотипных независимых микрообъектов, находящихся в определенных условиях, то есть квантовая механика — это статистическая теория ансамбля микрообъектов.
Философы считают, что подобная концепция весьма ограниченна и абсолютизирует опосредованный подход к анализу квантового состояния. Она не лишена также определенных логических недостатков. Согласно ей, квантовый ансамбль является первичным объектом изучения в квантовой механике. Но определение, даваемое ψ-функции, относит ее к микрочастице, и понятие «квантовый ансамбль» в него не входит. Кроме того, ψ-функция определяется внешними макроусловиями, независимо от ансамбля. Следовательно, квантовый ансамбль — это вторичный объект.
Из утверждения — квантовый ансамбль составляют изолированные частицы — неясно, каковы специфические свойства ансамбля, которые отличают его от классических статистических ансамблей. Очевидно, специфичность квантового ансамбля обусловлена особенностями (специфичностью) составляющих его микрочастиц. Мы возвращаемся к тому, что на первичном уровне (и опять-таки первичный уровень) — микрочастица.
Следствием подобных представлений явилось неправильное толкование и определение понятия «квантовомеханическое состояние». «…Состояние частицы или системы, характеризуемое волновой функцией, — подчеркивает Д. И. Блохинцев[56], — следует понимать как принадлежность частицы или системы к определенному чистому квантовому ансамблю. Именно в этом смысле и будут употребляться в дальнейшем слова: „состояние частицы“, „состояние квантовой системы“ и т. д.».
Таким образом, понятие «квантовый ансамбль» определяется через понятие «состояние частицы», а понятие «состояние» — через понятие «квантовый ансамбль». К тому же данное определение фактически сводит сущность квантовомеханического состояния к принадлежности частицы к ансамблю. Очевидно, что подобное толкование неудовлетворительно.
Квантовая механика требует создания системы идеализации, базирующейся на понятии реального состояния индивидуального объекта. В этом смысле определенный интерес вызывает концепция квантового состояния, предложенная В. А. Фоком[57]. Он, в основном, опирается на реальность квантовомеханического состояния отдельного микрообъекта. В. А. Фок считает, что ψ-функция относится не к ансамблю частиц, а к отдельной частице, характеризуя вероятность того или иного состояния микрообъекта при данных условиях. Он вводит в описание состояния микрообъекта «…существенно новый элемент — понятие вероятности, а тем самым и понятие потенциальной возможности». И далее пишет: «…Введение их отражает не неполноту условий, а объективно существующие при данных условиях потенциальные возможности».
Следовательно, ψ-функция характеризует возможные состояния микрообъекта при определенном макроскопическом окружении. Эти возможные состояния представляют собой ансамбль. В действительность превращается одна из возможностей этого ансамбля. Таким образом, по В. А. Фоку, понятие «квантовомеханическое состояние» отражает присущие микрочастицам объективные возможности обнаружения определенных значений физических величин.
Как замечает А. Л. Симанов, подобное толкование наиболее тесно смыкается с философской интерпретацией понятия «состояние» как отражающего определенные формы бытия материальных объектов. Но и здесь виден ряд недостатков. Действительно, такое толкование отражает лишь одну сторону реального квантовомеханического состояния, а именно — возможность его проявления, и ничего не говорит о сущности самого состояния. В интерпретации В. А. Фока заметно влияние классических представлений, в которых состояние объекта отождествлялось с его характеристиками. Нельзя также трактовать это понятие в отрыве от других философских категорий. Обоснование и толкование этого понятия осуществимы лишь в системе других понятий и представлений, что можно сделать только на основе соотнесения новых данных с общими представлениями о структурной организации материи и с теорией познания.
Далее А. Л. Симанов анализирует взгляды различных философов и делает некоторые выводы, например, следующий: состояние объекта обусловлено внешними и внутренними взаимодействиями и формируется ими, то есть состояние обусловлено как внешним окружением, так и внутренним миром. Еще один вывод: не состояние объекта задается характеристиками, а характеристики определяются его состоянием. Точнее, в процессе изучения объекта выделяется то или иное его состояние, которое описывается выбираемым нами набором характеристик, а величины их определяются состоянием объекта. И так далее…
Пожалуй, довольно о философии. Я понимаю, что нелегко разобраться во всех этих философских рассуждениях, но, думаю, мне удалось донести мысль, что с понятием «состояние» в квантовой теории все не так просто. Почему же нет единого мнения о «состоянии» среди квантовых физиков? Почему в классической физике не существует проблем с понятием «состояние», а вот в квантовой теории сложности возникают? На этот вопрос я постараюсь ответить ниже, пока же скажу кратко. Все очень просто — единого мнения нет потому, что квантовая теория существенно расширяет пространство возможных состояний, в которых может находиться система, и оказывается, что есть такие состояния объектов, которые «ни в какие ворота не лезут» с точки зрения наших привычных представлений о реальности. Например, нелокальные запутанные состояния, которые являются просто «мистическими» для классической физики. Отсюда и различные попытки избавиться от этой «мистики» и вернуться в область привычных представлений о реальности, но нужно ли это делать? Не правильнее ли будет принимать мир таким, какой он есть, и не подстраивать его под свои представления? Может быть, и не нужно пытаться изо всех сил втиснуть квантовую теорию в тесные рамки видимой нами реальности. Может быть, лучше честно признаться в том, что окружающая Реальность гораздо шире, полнее и глубже не только классической физики, но и вообще любых наших теоретических моделей и представлений о Реальности.
Есть два основных способа, с помощью которых физики пытаются вернуть квантовые состояния в лоно привычных классических представлений. Первый — вообще закрыть глаза на то, что вектор состояния имеет под собой реальную физическую основу, и считать его всего лишь математическим символом, который только помогает описывать реальность. И второй — это ансамблевая (статистическая) интерпретация квантовой механики. Но ни тот, ни другой способ не проходит элементарной проверки с точки зрения диалектической логики и философского анализа. Противоречия снимаются лишь в одном случае — когда состояния системы имеют под собой реальную физическую основу, и это именно состояния одной системы, а не какого-то там искусственного ансамбля. Лишь при таком условии удается свести концы с концами в философском плане, но при этом мы вынуждены будем признать, что любая система может находиться в «сверхъестественных», трансцендентных (запредельных, потусторонних) состояниях — немыслимых с классической точки зрения.
2.3. Реальны ли «сверхъестественные» состояния?
До недавнего времени квантовой механике удавалось избегать различных «мистических» состояний типа ЭПР-пары или «кота Шредингера». Это делалось, например, за счет той же статистической (ансамблевой) интерпретации. В рамках последней предполагалось, что состояния такого типа возможны лишь для ансамбля частиц, то есть одна частица никак не может находиться в нелокальной суперпозиции, а есть набор обычных частиц в различных состояниях.
Но что делать теперь, когда такие «сверхъестественные» состояния научились реализовывать для отдельных частиц, например, кубитов в квантовом компьютинге? Более того, такие «магические» состояния уже начали работать в технических устройствах.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.