Сима Крейнин - Как надо думать? Страница 3
Сима Крейнин - Как надо думать? читать онлайн бесплатно
метод таблиц, применяемый при решении текстовых логических задач. Решение логических задач заключается в построении таблиц, которые позволяют наглядно представить условие задачи, контролировать процесс рассуждений и помогают сделать правильные логические выводы.
метод графов состоит в переборе возможных вариантов развития событий и окончательном выборе единственно верного решения.
метод блок-схем – метод, широко используемый в решении логических задач на переливание. Он заключается в том, что сначала в виде блоков выделяются операции, затем устанавливается последовательность выполнения этих операций.
метод кругов Эйлера используется для решения задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи. Круги Эйлера – геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.
Интересная математика
Математические задачи – самая обширная категория среди логических задач. Обычно сложность заключается не в математических вычислениях, а в трудности выбора способа вычисления. Иногда авторы математических задач специально запутывают условия, но чаще задачи основаны на невозможности закостенелого мышления среднестатистического человека изменить привычные шаблоны.
Решение математических задач поможет вам избавиться от этой закостенелости.
Маша и медведи
Маша принесла своим друзьям медведям торт. Известно, что старший медведь съедает торт за 2 дня, средний медведь – за 3 дня, младший медведь – за 6 дней. За сколько дней три медведя вместе съедят торт?
Решение
Используем метод рассуждений.
Так как старший медведь съедает торт за 2 дня, то за 1 день он съедает 1/2 торта.
Так как средний медведь съедает торт за 3 дня, то за 1 день он съедает 1/3 торта.
Так как младший медведь съедает торт за 6 дней, то за 1 день он съедает 1/6 торта.
Вместе все три медведя за 1 день съедят 1/2+1/3+1/6=1, то есть один торт.
Ответ. За 1 день.
Туристы
Группа туристов отправилась в поход. В первый день они прошли 1/3 пути, во второй – 1/3 остатка, в третий – 1/3 нового остатка. В результате им осталось пройти 32 км. Сколько километров был маршрут туристов?
Решение
Используем метод рассуждений, но решаем задачу с конца.
Так как осталось 32 км, а в третий день туристы прошли остаток, то 32 км будут составлять 2/3 последнего остатка. Тогда сам последний остаток будет равен
32 : 2/3 = 48 (км).
Эти 48 км будут составлять 2/3 длины маршрута, оставшегося пройти после первого дня. Тогда весь маршрут, который осталось пройти, будет равен
48 : 2/3 = 72 (км).
Эти 72 км составляют вновь 2/3, но уже всего маршрута туристов, а значит, весь маршрут будет равен 72 : 2/3 = 108 (км). Задача решена.
Ответ. 108 км
Можно решать такие задачи табличным методом, но заполнять таблицу надо также с конца.
Обратите внимание: каждый день туристы проходят треть пути, в две трети остаются. Значит, остаток каждый день в 2 раза больше, чем пройденный путь.
Если остаток третьего дня 32 км, то пройденный путь 16 км.
Тогда остаток второго дня 48 км (32км+16км), а пройденный путь 24 км.
Соответственно, остаток первого дня 72 км, пройденный путь 36 км, а весь маршрут составлял 108 км.
Муха
Два поезда, находящиеся на расстоянии 200 км, движутся навстречу друг другу со скоростью 50 км/ч каждый. Муха берёт старт с одного из поездов и летит по направлению к другому со скоростью 75 км/ч. Долетев до другого поезда, муха разворачивается и летит назад к первому. Так она летает туда и обратно, пока два поезда не сталкиваются, и насекомое погибает.
Какое расстояние успела пролететь муха?
Решение
Используем метод рассуждений.
Есть два способа решить эту задачу, один – простой, другой – тяжёлый. Тяжёлый способ решения задачи: просчитать каждый отрезок пути. «Мы пойдем другим путем».
Поезда сближаются друг с другом со скоростью 100 км/час, значит, через 2 часа они столкнутся. За это время муха успеет налетать 150 км.
Ответ. 150 км
Задачи для тренировки.
1. Уравнять дыню
Арбуз и лимон весят столько, сколько дыня.
Два арбуза весят столько, сколько дыня и лимон вместе.
Сколько надо лимонов, чтобы уравнять в весе дыню?
2. Побег из тюрьмы
Опасный преступник по кличке Бешеный Джо ночью сбежал из тюрьмы. Охранники обнаружили это только спустя полчаса после побега и бросились в погоню вместе со сторожевым псом. Джо бежал со скоростью 3 мили в час, а его преследователи – 4 мили в час. Пес со скоростью 12 миль в час носился взад-вперед между охранниками и беглецом. Наконец, преступник был схвачен.
Сколько миль за это время успел набегать неутомимый пёс?
3. Гуси
Над озерами летели гуси. На каждом озере садилась половина гусей и еще полгуся, остальные летели дальше. Все сели на семи озерах. Сколько было гусей?
4. Вес семьи
Мама и две ее дочери весят – 140 кг. Мама весит на 10кг больше, чем старшая дочь, а вместе на 80 кг больше, чем младшая. Сколько весит младшая дочь?
5. Ступеньки
Лена живет на четвертом этаже. При этом, поднимаясь к себе, домой, она проходит по лестнице 60 ступенек. Юля живет в этом же подъезде на втором этаже. Сколько ступенек проходит Юля, поднимаясь к себе, домой на второй этаж?
6. Диофант
Мало что известно о жизни одного греческого математика из Александрии, которого называют родоначальником алгебры. Предполагается, что он жил в 3-м веке нашей эры. По рассказам, на его надгробии была высечена следующая эпитафия:
«Детство Диофанта 1/6 жизни заняло; 1/12 жизни Диофант бороду растил; ещё 1/7 жизни Диофанта прошла до того, как он женился. Через 5 лет после свадьбы у Диофанта родился сын, который прожил только половину лет, что прожил его отец. А через 4 года после смерти сына умер Диофант»
Сколько лет прожил Диофант?
7. Грибы
Грибник собрал 100 килограммов грибов. Влажность грибов была 99% (они на 99% состояли из воды). Решил их подсушить и через некоторое время грибы усохли до влажности 98%. Сколько стали весить грибы после сушки?
8. Коровы на лугу
Шесть коров съедают всю траву на лугу за 12 дней, а 5 коров – за 16 дней. Сколько коров съедят всю траву на лугу за 24 дня?
Подсказка: трава ежедневно прирастает на одну и ту же величину.
9. Ведро воды
Папе ведра воды хватает на две недели, а если вместе с сыном, то на 10 дней. Вопрос: на сколько дней хватит сыну ведра воды, если он будет пить один?
10. Яблоки
У двух девочек есть по несколько яблок. Если одна даст другой 2 яблока, то у нее их станет в 2 раза меньше. А если вторая девочка даст первой 2 яблока, то у них станет поровну.
Сколько яблок у девочек?
11. Зубчатые колеса
Сколько оборотов сделает каждое из колес находящихся в сцеплении до возвращения в исходное положение, если у одного 12 зубьев, а у другого 54?
12. Если бы…
Если бы четверть от 20 была равна 4, то чему бы была равна треть от 10?
13. Завещание
Завещание в пользу жены и ребенка, который должен родиться: если родиться мальчик, то он получает 2/3, а жена 1/3. Если родится девочка, то она получает 1/3, а мать 2/3.
На свет появились близнецы – девочка и мальчик. Как разделить наследство?
14. Близнецы
В одном удивительном классе вместе учатся четыре пары близнецов! Однажды на школьный праздник вместе с детьми этого класса пришли все мамы и папы. Вместе их получилось 85 человек.
Сколько учеников в классе?
15. 120
Чему равна одна треть от одной четвёртой от одной пятой от половины от 120?
16. Стоимость книги
За книгу заплатили тысячу рублей. Осталось заплатить столько, сколько бы осталось заплатить, если б за неё заплатили столько, сколько осталось заплатить. Сколько она стоит?
Жалоба
Напишите нам, и мы в срочном порядке примем меры.