БСЭ БСЭ - Большая Советская Энциклопедия (ЛО) Страница 3
БСЭ БСЭ - Большая Советская Энциклопедия (ЛО) читать онлайн бесплатно
Однако научные идеи Л. не были поняты современниками. Его труд «О началах геометрии», представленный в 1832 советом университета в Академию наук, получил у М. В. Остроградского отрицательную оценку, а в 1834 в реакции журнала «Сын отечества» появилась анонимная издевательская статейка. Но Л. не прекратил разработки своей геометрии. Его работы появлялись в 1835—38, а в 1840 в Германии вышла его книга «Геометрические исследования» (на немецком языке). Эта стойкая борьба за научную истину отличает Л. от двух его современников, тоже пришедших к открытию неевклидовой геометрии. Венгерский математик Я. Больяй опубликовал свой труд позднее Л. (1832). Не встретив поддержки у современников, он не продолжил исследований. Немецкий математик К. Ф. Гаусс также владел началами неевклидовой геометрии. Но из опасения встретить непонимание Гаусс не разрабатывал их далее и не опубликовал. Однако, не высказываясь в печати, он высоко оценил труды Л., и по его предложению Л. был в 1842 избран членом-корреспондентом Гёттингенского учёного общества.
Л. получил ряд ценных результатов и в др. разделах математики: так, в алгебре он разработал новый метод приближённого решения уравнений (Лобачевского метод), в математическом анализе получил ряд тонких теорем о тригонометрических рядах, уточнил понятие непрерывной функции и др.
В 1846 Л. оказался фактически отстранённым от университета. Он был назначен помощником нового попечителя (без оплаты) и лишён ректорства. Здоровье его пошатнулось. Но семейное горе — смерть сына, материальные затруднения и развивавшаяся слепота не могли сломить мужества Л. Последнюю работу «Пангеометрию» он создал за год до смерти, диктуя её текст.
Л. умер непризнанным. Большую роль в признании трудов Л. сыграли исследования Э. Бельтрами (1868), Ф. Клейна (1871), А. Пуанкаре (1883) и др. Казанский университет и физико-математическое общество провели большую работу по выявлению значения идей Л. и изданию его геометрических сочинений. Широкое признание пришло к 100-летнему юбилею Л. — была учреждена международная премия, в Казани открыт памятник (1896).
Соч.: Полн. собр. соч., т. 1—5, М. — Л., 1946—51; Избр. труды по геометрии, М. — Л., 1956.
Лит.: Васильев А. В., Лобачевский, СПБ, 1914; Каган В. Ф., Лобачевский, 2 изд., М. — Л., 1948 (имеется библ.); Лаптев Б. Л., Великий русский математик, «Вестник высшей школы», 1967, № 12; Историко-математические исследования, в, 3, 4, 6, 11, М. — Л., 1950—58 (ряд статей); Модзалевский Л. Б., Материалы для биографии Н. И. Лобачевского, М. — Л., 1948.
Б. Л. Лаптев.
Н. И. Лобачевский.
Лобачевского геометрия
Лобаче'вского геоме'трия, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского. Евклидова аксиома о параллельных гласит: через точку, не лежащую на данной прямой, проходит только одна прямая, лежащая с данной прямой в одной плоскости и не пересекающая её. В Л. г. вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её. Казалось бы, эта аксиома противоречит чрезвычайно привычным представлениям. Тем не менее как эта аксиома, так и вся Л. г. имеет вполне реальный смысл (о чём см. ниже). Л. г. была создана и развита Н. И. Лобачевским, который впервые сообщил о ней в 1826. Л. г. называется неевклидовой геометрией, хотя обычно термину «неевклидова геометрия» придают более широкий смысл, включая сюда и др. теории, возникшие вслед за Л. г. и также основанные на изменении основных посылок евклидовой геометрии. Л. г. называется специально гиперболической неевклидовой геометрией (в противоположность эллиптической геометрии Римана) (см. Неевклидовы геометрии, Римана геометрия).
Л. г. представляет теорию, богатую содержанием и имеющую применение как в математике, так и в физике. Историческое её значение состоит в том, что её построением Лобачевский показал возможность геометрии, отличной от евклидовой, что знаменовало новую эпоху в развитии геометрии и математики вообще (см. Геометрия). С современной точки зрения можно дать, например, следующее определение Л. г. на плоскости: она есть не что иное, как геометрия внутри круга на обычной (евклидовой) плоскости, лишь выраженная особым образом. Именно, будем рассматривать круг на обычной плоскости (рис. 1) и внутренность его, т. е. круг, за исключением ограничивающей его окружности, назовем «плоскостью». Точкой «плоскости» будет точка внутри круга. «Прямой» будем называть любую хорду (например, а, b, b', MN) (с исключенными концами, т. к. окружность круга исключена из «плоскости»). «Движением» назовем любое преобразование круга самого в себя, которое переводит хорды в хорды. Соответственно, равными называются фигуры внутри круга, переводящиеся одна в другую такими преобразованиями. Тогда оказывается, что любой геометрический факт, описанный на таком языке, представляет теорему или аксиому Л. г. Иными словами, всякое утверждение Л. г. на плоскости есть не что иное, как утверждение евклидовой геометрии, относящееся к фигурам внутри круга, лишь пересказанное в указанных терминах. Евклидова аксиома о параллельных здесь явно не выполняется, т. к. через точку О, не лежащую на данной хорде а (т. е. «прямой»), проходит сколько угодно не пересекающих её хорд («прямых») (например, b, b'). Аналогично, Л. г. в пространстве может быть определена как геометрия внутри шара, выраженная в соответствующих терминах («прямые» — хорды, «плоскости» — плоские сечения внутренности шара, «равные» фигуры — те, которые переводятся одна в другую преобразованиями, переводящими шар сам в себя и хорды в хорды). Таким образом, Л. г. имеет совершенно реальный смысл и столь же непротиворечива, как геометрия Евклида. Описание одних и тех же фактов в разных терминах или, напротив, описание разных фактов в одних и тех же терминах представляет характерную черту математики. Она ясно выступает, например, когда одна и та же линия задаётся в разных координатах разными уравнениями или, напротив, одно и то же уравнение в разных координатах представляет различные линии.
Возникновение геометрии Лобачевского. Источником Л. г. послужил вопрос об аксиоме о параллельных, которая известна также как V постулат Евклида (под этим номером утверждение, эквивалентное приведённой выше аксиоме о параллельных, фигурирует в списке постулатов в «Началах» Евклида). Этот постулат, ввиду его сложности в сравнении с другими, вызвал попытки дать его доказательство на основании остальных постулатов.
Вот неполный перечень учёных, занимавшихся доказательством V постулата до 19 в.: древнегреческий математики Птолемей (2 в.), Прокл (5 в.) (доказательство Прокла основано на предположении о конечности расстояния между двумя параллельными), Ибн аль-Хайсам из Ирака (конец 10 — начало 11 вв.) (Ибн аль-Хайсам пытался доказать V постулат, исходя из предположения, что конец движущегося перпендикуляра к прямой описывает прямую линию), таджикский математик Омар Хайям (2-я половина 11 — начало 12 вв.), азербайджанский математик Насирэддин Туей (13 в.) (Хайям и Насирэддин при доказательстве V постулата исходили из предположения, что две сходящиеся прямые не могут при продолжении стать расходящимися без пересечения), немецкий математик К. Клавий (Шлюссель, 1574), итальянские математики П. Катальди (впервые в 1603 напечатавший работу, целиком посвященную вопросу о параллельных), Дж. Борелли (1658), Дж. Витале (1680), английский математик Дж. Валлис (1663, опубликовано в 1693) (Валлис основывает доказательство V постулата на предположении, что для всякой фигуры существует ей подобная, но не равная фигура). Доказательства перечисленных выше геометров сводились к замене V постулата др. предположением, казавшимся более очевидным. Итальянский математик Дж. Саккери (1733) сделал попытку доказать V постулат от противного. Приняв предложение, противоречащее постулату Евклида, Саккери развил из него довольно обширные следствия. Ошибочно признав некоторые из этих следствий приводящими к противоречиям, Саккери заключил, что постулат Евклида доказан. Немецкий математик И. Ламберт (около 1766, опубликовано в 1786) предпринял аналогичные исследования, однако он не повторил ошибки Саккери, а признал своё бессилие обнаружить в построенной им системе логическое противоречие. Попытки доказательства постулата предпринимались и в 19 в. Здесь следует отметить работы французского математика А. Лежандра; одно из его доказательств (1800) основано на допущении, что через каждую точку внутри острого угла можно провести прямую, пересекающую обе стороны угла, т. е., как и все его предшественники, он заменил постулат др. допущением. Довольно близко к построению Л. г. подошли немецкие математики Ф. Швейкарт (1818) и Ф. Тауринус (1825), однако ясно выраженной мысли о том, что намечаемая ими теория будет логически столь же совершенна, как и геометрия Евклида, они не имели.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.