Билл Брайсон - Краткая история почти всего на свете Страница 31

Тут можно читать бесплатно Билл Брайсон - Краткая история почти всего на свете. Жанр: Справочная литература / Энциклопедии, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Билл Брайсон - Краткая история почти всего на свете читать онлайн бесплатно

Билл Брайсон - Краткая история почти всего на свете - читать книгу онлайн бесплатно, автор Билл Брайсон

Если бы вам потребовалось проиллюстрировать представление об Америке девятнадцатого века как о стране открытых возможностей, вряд ли вы нашли бы лучший пример, нежели карьера Альберта Майкельсона. Он родился в 1852 году на польско-германской границе в семье бедных еврейских торговцев, в раннем детстве переехал с семьей в Соединенные Штаты и вырос в Калифорнии, в лагере на приисках во время «золотой лихорадки», где его отец торговал одеждой. Не имея возможности по бедности платить за учебу в колледже, Альберт отправился в Вашингтон, округ Колумбия, и стал околачиваться у дверей Белого Дома, чтобы во время ежедневного президентского моциона попадаться на глаза Улиссу С. Гранту. (То был куда более наив­ный век.) В ходе этих прогулок Майкельсон настолько снискал расположение президента, что тот согласился предоставить ему бесплатное место в Военно-морской академии США. Именно там Майкельсон освоил физику.

10 лет спустя, уже будучи профессором в кливлендской Школе прикладных наук, Майкельсон заинтересовался возможностью измерить движение эфира — нечто вроде встречного ветра, который испытывают объекты, прокладывающие себе путь сквозь пространство. Одно из предсказаний ньютоновской физики заключалось в том, что скорость света, движущегося в эфире, должна меняться в зависимости от того, приближается наблюдатель к источнику света или удаляется от него, но никто еще не придумал способа измерить это. Майкельсону пришло в голову, что за полгода направление движения Земли вокруг Солнца меняется на противоположное. Поэтому, если выполнить тщательные измерения при помощи очень точного прибора и сравнить скорость движения света в противоположные времена года, то можно получить ответ.

Майкельсон уговорил недавно разбогатевшего изобретателя телефона Александра Грэма Белла предоставить средства на создание оригинального и точного прибора собственной конструкции, названного интерферометром, который мог с большой точностью измерять скорость света. Затем с помощью талантливого, но державшегося в тени Морли Майкельсон принялся за многолетние скрупулезные измерения. Работа была тонкой и изнурительной и на время приостанавливалась из-за серьезного нервного переутомления ученого, но к 1887 году были получены результаты. Они оказались совсем не такими, каких ожидали двое экспериментаторов.

Как написал астрофизик из Калифорнийского технологического института Кип С. Торн106: «Скорость света оказалась одинаковой во всех направлениях и во все времена года». Это был первый за двести лет — действительно ровно за 200 лет — намек на то, что законы Нью­тона, возможно, применимы не всегда и не везде. Результат опыта Майкельсона—Морли стал, по словам Уильяма Кроппера, «возможно, самым известным отрицательным результатом за всю историю физики». За эту работу Майкельсон удостоился Нобелевской премии по физике — причем он стал первым американцем, удостоенным этой награды, — правда, спустя двадцать лет. А до того опыты Майкельсона—Морли неприятно, словно дурной запах, витали на задворках научной мысли.

Удивительно, что, несмотря на свои открытия, Майкельсон на заре двадцатого века причислял себя к тем, кто считал, что здание науки почти закончено и остается, по словам одного из авторов журнала Nature, «добавить лишь несколько башенок и шпилей да вырезать несколько украшений на крыше».

На деле же, разумеется, мир должен был вот-вот вступить в век такой науки, в которой многие люди вообще ничего не поймут и никто не будет в состоянии охватить все. Ученые вскоре обнаружат, что запутались в беспорядочном царстве частиц и античастиц, где вещи возникают и исчезают за отрезки времени, в сравнении с которыми наносекунды кажутся излишне затянутыми и бедными на события, где все незнакомо. Наука перемещалась из мира макрофизики, где предметы можно увидеть, подержать, измерить, в мир микрофизики, в котором явления происходят с непостижимой быстротой и в масштабах, не поддающихся воображению. Мы должны были вот-вот вступить в квантовый век, и первым, кто толкнул дверь, был до тех пор неудачливый Макс Планк.

В 1900 году, в зрелом возрасте сорока двух лет, теперь уже физик-теоретик в Берлинском университете, Планк обнародовал новую «квантовую теорию», утверждавшую, что энергия — не непрерывный поток вроде текущей воды, а поступает обособленными частями, которые он назвал квантами. Это была действительно новая концепция, к тому же очень удачная. Вскоре она поможет решить загадку экспериментов Майкельсона—Морли, поскольку покажет, что свету вообще-то не обязательно быть волной. А в более отдаленной перспективе она станет фундаментом всей современной физики. Во всяком случае, это был первый сигнал, что мир скоро изменится.

Но поворотным пунктом — зарей нового века — стал 1905 год, когда в немецком физическом журнале Аппакп der Physik появился ряд статей молодого швейцарского чиновника, не связанного с университетами, не имевшего доступа к лабораториям и не являвшегося постоянным читателем библиотек крупнее национального патентного бюро в Берне, где он работал техническим экспертом третьего класса. (Незадолго до этого заявление о повышении в должности до второго класса было отклонено.)

Его звали Альберт Эйнштейн, и за один этот богатый событиями год он представил в Аппакп der Physik пять работ, из них три, по словам Ч.П.Сноу, «относились к числу величайших трудов в истории физики» — в одной посредством новой квантовой теории Планка исследовался фотоэлектрический эффект, другая была посвящена поведению мелких частиц во взвешенном состоянии (известному как броуновское движение), и еще в одной излагались основы специальной теории относительности.

В первой, за которую ее автор удостоился Нобелевской премии, объяснялась природа света (что, среди прочего, способствовало появлению телевидения)*.

* (Эйнштейн был удостоен премии за несколько неопределенные «заслуги в области теоретической физики». Ему пришлось ждать награды шестнадцать лет, до 1921 года, — довольно долгий срок по любым меркам, однако пустяк по сравнению с присуждением премии Фредерику Рейнсу, который открыл нейтрино в 1957 году, а удостоился Нобелевской премии лишь в 1995-м, тридцать восемь лет спустя, или немцу Энрсту Руске, изобретшему электронный микроскоп в 1932 году, а получившему Нобелевскую премию в 1986-м, почти через полстолетия. Поскольку Нобелевская премия не присуждается посмертно, важным условием ее получения наряду с изобретательностью является долголетие.)

Вторая содержала доказательство того, что атомы действительно существуют — факт, который, как ни странно, продолжал тогда оспариваться. А третья просто изменила мир.

Эйнштейн родился в 1879 году в Ульме, на юге Германии, но вырос в Мюнхене. В ранний период жизни мало что говорило о грядущих масштабах его личности. В 1890-х годах электротехнический бизнес отца стал приходить в упадок, и семья переехала в Милан, но Альберт, к тому времени уже подросток, уехал в Швейцарию продолжать образование — хотя с первой попытки не смог сдать вступительный экзамен. В 1896 году чтобы избежать призыва в армию, он отказался от немецкого гражданства и поступил в Цюрихский политехнический институт на четырехгодичный курс, выпускавший преподавателей естественных наук для средних школ. Он был способным, но не особо выдающимся студентом.

В 1900 году он окончил институт и через несколько месяцев стал публиковаться в Annalen der Physik. Самая первая его работа о физике жидкостей в соломинках для питья (надо же!) появилась в одном номере с работой Планка о квантовой теории. С 1902 по 1904 год он опубликовал ряд работ по статистической механике, только потом узнав, что в Коннектикуте скромный плодовитый Дж. Уиллард Гиббс проделал то же самое в 1901 году, опубликовав результаты в своих «Элементарных основах статистической механики».

Альберт полюбил венгерскую студентку-однокурсницу Милеву Марич. В 1901 году у них родился внебрачный ребенок, дочь, которую они потихоньку отдали на удочерение. Эйнштейн своего ребенка никогда не видел. Два года спустя они с Милевой поженились107. Между двумя этими событиями Эйнштейн поступил на работу в швейцарское патентное бюро, где проработал следующие семь лет. Работа ему нравилась: она была достаточно интересной, чтобы дать работу уму, но не настолько напряженной, чтобы помешать занятиям физикой. Вот в таких условиях он в 1905 году и создал специальную теорию относительности.

«К электродинамике движущихся тел» — одна из самых удивительных научных публикаций, когда-либо выходивших в свет, как по изложению, так и по содержанию. В ней не было ссылок или сносок, почти никаких математических выкладок108, не было и упоминаний о предшествующих или оказавших влияние работах и говорилось лишь о помощи одного человека — коллеги по патентному бюро Мишеля Бессо. Выходило, писал Ч.П. Сноу109, что «Эйнштейн пришел к этим умозаключениям лишь благодаря отвлеченным размышлениям, без посторонней помощи, не слушая мнений других. Удивительно, но в значительной мере именно так оно и было».

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.