БСЭ БСЭ - Большая Советская Энциклопедия (МИ) Страница 33

Тут можно читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (МИ). Жанр: Справочная литература / Энциклопедии, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

БСЭ БСЭ - Большая Советская Энциклопедия (МИ) читать онлайн бесплатно

БСЭ БСЭ - Большая Советская Энциклопедия (МИ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ

  Существование предела разрешающей способности влияет на выбор увеличений, получаемых с помощью М. Увеличения от 500 А до 1000 А называют полезными, т. к. при них глаз наблюдателя различает все элементы структуры объекта, разрешаемые М. При этом исчерпываются возможности М. по разрешающей способности. При увеличениях свыше 1000 А не выявляются никакие новые подробности структуры препарата; всё же иногда такие увеличения используют — в микрофотографии, при проектировании изображений на экран и в некоторых других случаях. Существенно более высокими, чем у М., разрешающей способностью и, следовательно, полезным увеличением обладает электронный микроскоп .

  Методы освещения и наблюдения (микроскопия). Структуру препарата можно различить лишь тогда, когда разные его частицы по-разному поглощают или отражают свет либо отличаются одна от другой (или от окружающей среды) показателем преломления. Эти свойства обусловливают разницу амплитуд и фаз световых волн, прошедших через различные участки препарата, от чего, в свою очередь, зависит контрастность изображения. Поэтому методы наблюдения в М. выбираются (и обеспечиваются конструктивно) в зависимости от характера и свойств изучаемых объектов.

  Метод светлого поля в проходящем свете применяется при исследовании прозрачных препаратов с включенными в них абсорбирующими (поглощающими свет) частицами и деталями. Таковы, например, тонкие окрашенные срезы животных и растительных тканей, тонкие шлифы минералов и т. д. В отсутствие препарата пучок света из конденсора 6 (рис. 1 ), проходя через объектив 8, даёт вблизи фокальной плоскости окуляра 9 равномерно освещенное поле. Если в препарате 7 имеется абсорбирующий элемент, то он отчасти поглощает и отчасти рассеивает падающий на него свет (штриховая линия), что и обусловливает появление изображения. Метод может быть полезен и при наблюдении неабсорбирующих объектов, но лишь в том случае, если они рассеивают освещающий пучок настолько сильно, что значительная часть его не попадает в объектив.

  Метод косого освещения является разновидностью предыдущего, отличаясь тем, что свет на объект направляют под большим углом к направлению наблюдения. В ряде случаев это позволяет выявить «рельефность» объекта за счёт образования теней.

  Метод светлого поля в отражённом свете (рис. 3 ) применяется для наблюдения непрозрачных отражающих свет объектов, например шлифов металлов или руд. Освещение препарата 4 (от осветителя 1 и полупрозрачного зеркала 2) производится сверху, через объектив 3, который одновременно играет и роль конденсора. В изображении, создаваемом в плоскости 6 объективом совместно с тубусной линзой 5, структура препарата видна из-за различия в отражающей способности её элементов; на светлом поле выделяются также неоднородности, рассеивающие падающий на них свет.

  Метод тёмного поля в проходящем свете (рис. 4 ) применяется для получения изображений прозрачных неабсорбирующих объектов, невидимых при освещении по методу светлого поля. Часто таковы биологические объекты. Свет от осветителя 1 и зеркала 2 направляется на препарат конденсором специальной конструкции — т. н. конденсором тёмного поля 3. По выходе из конденсора основная часть лучей света, не изменившая своего направления при прохождении через прозрачный препарат, образует пучок в виде полого конуса и не попадает в объектив 5 (который находится внутри этого конуса). Изображение в М. создаётся лишь небольшой частью лучей, рассеянных микрочастицами находящегося на предметном стекле 4 препарата внутрь конуса и прошедшими через объектив. В поле зрения 6 на тёмном фоне видны светлые изображения элементов структуры препарата, отличающихся от окружающей среды показателем преломления. У крупных частиц видны только светлые края, рассеивающие лучи света. При этом методе по виду изображения нельзя определить, прозрачны частицы или непрозрачны, больший или меньший показатель преломления они имеют по сравнению с окружающей средой.

  Метод ультрамикроскопии, основанный на том же принципе (препараты в ультрамикроскопах освещаются перпендикулярно направлению наблюдения), даёт возможность обнаружить (но не «наблюдать» в буквальном смысле слова) чрезвычайно мелкие частицы, размеры которых лежат далеко за пределами разрешающей способности наиболее сильных М. С помощью иммерсионных ультрамикроскопов удаётся зарегистрировать присутствие в препарате частиц размером до 2×10-9 м. Однако определить форму и точные размеры таких частиц с помощью этого метода невозможно: их изображения представляются наблюдателю в виде дифракционных пятен, размеры которых зависят не от размеров и формы самих частиц а от апертуры объектива и увеличения М. Т. к. подобные частицы рассеивают очень мало света, то для их освещения требуются чрезвычайно сильные источники света, например угольная электрическая дуга. Ультрамикроскопы применяются главным образом в коллоидной химии.

  При наблюдении по методу тёмного поля в отражённом свете непрозрачные препараты (например, шлифы металлов) освещают сверху — через специальную кольцевую систему, расположенную вокруг объектива и называемую эпиконденсором.

  Метод наблюдения в поляризованном свете (поляризационная микроскопия) служит для микроскопического исследования препаратов, включающих оптически анизотропные элементы (или целиком состоящих из таких элементов). К ним относятся многие минералы, зёрна в шлифах сплавов, некоторые животные и растительные ткани и пр. Оптические свойства анизотропных микрообъектов различны в различных направлениях (см. Оптическая анизотропия ) и проявляются по-разному в зависимости от ориентации этих объектов относительно направления наблюдения и плоскости поляризации света , падающего на них. Наблюдение можно вести как в проходящем, так и в отражённом свете. Свет, излучаемый осветителем, пропускают через поляризатор; сообщенная ему при этом поляризация меняется при последующем прохождении света через препарат (или отражении от него), и эти изменения изучаются с помощью анализатора (см. Поляризационные приборы ) и различных компенсаторов оптических . По таким изменениям можно судить об основных оптических характеристиках анизотропных микрообъектов: силе двойного лучепреломления , количестве оптических осей и их ориентации, вращении плоскости поляризации , дихроизме .

  Метод фазового контраста (и его разновидность — т. н. метод «аноптрального» контраста) служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани. Метод основан на том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Эти фазовые изменения, не воспринимаемые непосредственно ни глазом, ни фотопластинкой, с помощью специального оптического устройства преобразуются в изменения амплитуды световой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различимы глазом или фиксируются на фоточувствительном слое. Другими словами, в получаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Такое изображение называется фазово-контрастным. В типичной для этого метода схеме (рис. 5 ) в переднем фокусе конденсора 3 устанавливается апертурная диафрагма 2, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива 5, и там же устанавливается т. н. фазовая пластинка 6, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка может быть помещена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но в любом случае неотклонённые в препарате 4 лучи от осветителя 1, дающие изображение диафрагмы 2, должны полностью проходить через фазовое кольцо, которое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на l/4 (l — длина волны света). В то же время лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо (штриховые линии), и не претерпевают дополнительного сдвига фазы. С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами оказывается близкой к 0 или l/2, и в результате интерференции света в плоскости изображения 4' препарата 4 они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения. Метод позволяет различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля. Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для подобных частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.