БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ) Страница 33
БСЭ БСЭ - Большая Советская Энциклопедия (ИЗ) читать онлайн бесплатно
Лит.: ГОСТ 10875-64. Машины оптико-механические для измерения длин, М., 1964.
Н. Н. Марков.
Оптико-механическая измерительная машина: 1 — станина; 2 — пинольная бабка; 3 — люнеты; 4 — предметный стол; 5 — измерительная обабка с отсчётным устройством.
Измерительная техника
Измери'тельная те'хника, отрасль науки и техники, изучающая методы и средства получения опытным путём информации о величинах, характеризующих свойства и состояния объектов исследования и производственных процессов. Для 2-й половины 20 в. характерно постепенное осознание того факта, что И. т. является не столько «искусством» измерения, сколько особой научной дисциплиной со своей собственной системой понятий и своими методами анализа. Однако процесс формирования И. т. как единой научной дисциплины ещё не закончен. Во многих промышленно развитых странах, несмотря на высокий технический уровень приборостроения, И. т. рассматривается скорее как отрасль промышленности, чем как отрасль науки. В английском языке, например, нет даже точного эквивалента термина «И. т.»; одним из наиболее употребительных терминов является «instrumentation», что можно перевести как «прибористика».
И. т. существует с глубокой древности. За несколько тысячелетий до н. э. развитие товарообмена привело к измерениям веса и появлению весов; примитивная И. т. требовалась также при разделе земельных участков (измерение площадей); при установлении распорядка дня и суток, выработке календаря (измерение времени); в астрономических наблюдениях и кораблевождении (измерение углов и расстояний); в строительстве (измерение размеров). В античную эпоху в процессе научных исследований были выполнены некоторые тонкие измерения, например были измерены углы преломления света, определена дуга земного меридиана. Примерно до 15 в. И. т. не отделялась от математики, о чём говорят такие названия, как «геометрия» (измерение Земли), «тригонометрия» (измерение треугольников), «пространство трех измерений» и т. д. Средневековые математические трактаты часто содержали простое перечисление правил измерения площадей и объёмов. Математическая идеализация реального процесса измерения сохранилась в ряде важных математических понятий (от иррационального числа до интеграла).
В 16—18 вв. совершенствование И. т. шло вместе с бурным развитием физики, которая, основываясь в то время только на эксперименте, полностью опиралась на И. т. К этому периоду относятся усовершенствование часов , изобретение микроскопа , барометра , термометра , первых электроизмерительных приборов и др. измерительных устройств, использовавшихся главным образом в научных исследованиях. Уже в конце 16 — начале 17 вв. повышение точности измерений способствовало революционным научным открытиям. Так например, точные астрономические измерения Т. Браге позволили И. Кеплеру установить, что планеты обращаются по эллиптическим орбитам. В создании измерительных приборов и разработке их теории принимали участие крупнейшие учёные — Г. Галилей , И. Ньютон , Х. Гюйгенс , — Г. Рихман и др. Каждое открываемое физическое явление воплощалось в соответствующем приборе, который, в свою очередь, помогал точно определить значение исследуемой величины и установить законы взаимодействия между различными величинами. Так, например, постепенно было выработано понятие температуры и создана температурная шкала.
В конце 18 и первой половине 19 вв. в связи с распространением паровых двигателей и развитием машиностроения резко повысились требования к точности обработки деталей машин, что обусловило быстрое развитие промышленной И. т. В это время совершенствуются приборы для определения размеров, появляются измерительные машины , вводятся калибры и т. д. В 19 в. были созданы основы теории И. т. и метрологии ; получила распространение метрическая система мер, обеспечившая единство измерений в науке и производстве. Огромное значение для И. т. имели труды К. Гаусса , разработавшего метод наименьших квадратов, теорию случайных погрешностей, абсолютную систему единиц (CGSE) и заложившего вместе с В. Вебером основы магнитных измерений. Благодаря развитию теплоэнергетики, внедрению электрических средств связи, а затем и первых электроэнергетических установок в промышленности начали использоваться методы и средства измерения, которые до этого применялись лишь при научных исследованиях, — появились теплотехнические и электроизмерительные приборы. На рубеже 19 и 20 вв. в промышленно развитых странах стали создаваться метрологические учреждения. В России в 1893 была образована Главная палата мер и весов, которую возглавил Д. И. Менделеев .
Начало 20 в. знаменует новый этап в развитии И. т. — электрические, а позднее и электронные средства начинают применяться для измерения механических, тепловых, оптических величин, для химического анализа, геологической разведки и т. д., т. е. для измерений любых величин. Появляются такие новые отрасли, как радиоизмерения, спектрометрия и др. Возникает приборостроительная промышленность. Качественный скачок в развитии И. т. произошёл после 2-й мировой войны 1939—1945, когда И. т. выступила как отрасль кибернетики, занимающаяся получением и преобразованием информации (измерительной), наряду с такими отраслями, как автоматика и вычислительная техника .
Измерения — важнейший этап деятельности исследователей и экспериментаторов во всех отраслях науки и техники. Измерительная аппаратура — основное оборудование научно-исследовательских институтов и лабораторий, неотъемлемая часть оснастки любого технологического процесса, главный полезный груз метеорологических ракет, искусственных спутников Земли и космических станций.
Современная измерительная аппаратура предназначается не только для воздействия на органы чувств человека, как, например, в случае сигнализации или отсчёта результатов измерения наблюдателем, но всё чаще для автоматической регистрации и математической обработки результатов измерения и передачи их на расстояние или для автоматического управления какими-либо процессами. В приборах и системах на разных участках измерительных каналов используются механические, электрические, пневматические, гидравлические, оптические, акустические сигналы, амплитудная, частотная и фазовая модуляции; чрезвычайно широко применяются импульсные и цифровые устройства, следящие системы. Процесс измерения современными измерительными устройствами состоит в целенаправленном преобразовании измеряемой величины в форму, наиболее удобную для конкретного использования (восприятия) человеком или машиной. Например, смысл действия всех электроизмерительных приборов (амперметров, вольтметров, гальванометров и др.) заключается в том, что с их помощью измеряемая электрическая величина, изменения которой непосредственно органами чувств человека не могут быть оценены количественно, преобразуется в определённое механическое перемещение указателя (стрелки или светового луча). Таково же назначение и многих механических измерительных приборов и измерительных преобразователей , с помощью которых разнообразные физические величины преобразуются в механическое перемещение (штангенциркуль, микрометр, пружинные весы, ртутный термометр, пружинный манометр или барометр, волосяной гигрометр и т. п.). Развитие И. т. в конце первой половины 20 в. показало, что наиболее удобно такое преобразование измеряемых величин, результат которого представляется не как механические перемещения, а в виде электрической величины (тока, напряжения, частоты, длительности импульсов и др.). Тогда для всех последующих операций (передача результатов измерения на расстояние, их регистрация, математическая обработка, использование в системах автоматического управления) может быть применена стандартная электрическая аппаратура. Основные преимущества использования электрических методов И. т. — простота регулирования чувствительности и малая инерционность электрических устройств, возможность одновременного измерения множества различных по своей природе величин, удобство комплектации из типовых блоков электрической аппаратуры управляющих машин и измерительно-информационных систем. С помощью электрических измерительных устройств можно измерить как медленно, так и очень быстро изменяющиеся во времени процессы, передавать результаты измерений на большие расстояния или преобразовывать их в сигналы для управления контролируемыми процессами, что имеет важнейшее практическое значение как для промышленности, так и для научных исследований.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.