БСЭ БСЭ - Большая Советская Энциклопедия (СК) Страница 37
БСЭ БСЭ - Большая Советская Энциклопедия (СК) читать онлайн бесплатно
В монокристаллических твёрдых телах С. з. зависит от направления распространения волны относительно кристаллографических осей. Во многих веществах С. з. зависит от наличия посторонних примесей. В металлах и сплавах С. з. существенно зависит от обработки, которой был подвергнут металл: прокат, ковка, отжиг и т. п.
Измерение С. з. используется для определения многих свойств веществ. Измерение малых изменений С. з. является чувствительным методом определения наличия примесей в газах и жидкостях. В твёрдых телах измерения С. з. и её зависимость от разных факторов позволяют исследовать зонную структуру полупроводников , строение Ферми поверхностей в металлах и пр. Ряд контрольно-измерительных применений ультразвука в технике основан на измерениях С. з.
Всё вышеизложенное относится к распространению звука в сплошной среде, т. е. С. з. является макроскопической характеристикой среды. Реальные вещества не являются сплошными; их дискретность приводит к необходимости рассмотрения упругих колебаний др. типов. В твёрдом теле понятие С. з. относится только к акустической ветви колебаний кристаллической решётки .
Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Колесников А. Е., Ультразвуковые измерения, М., 1970; Исакович М. А., Общая акустика, М., 1973.
А. Л. Полякова.
Скорость света
Ско'рость све'та в свободном пространстве (вакууме) с, скорость распространения любых электромагнитных волн (в т. ч. световых); одна из фундаментальных физических постоянных , огромная роль которой в современной физике определяется тем, что она представляет собой предельную скорость распространения любых физических воздействий (см. Относительности теория ) и инвариантна (т. е. не меняется) при переходе от одной системы отсчёта к другой. Никакие сигналы не могут быть переданы со скоростью, большей с, а со скоростью с их можно передать лишь в вакууме. Величина с связывает массу и полную энергию материального тела; через неё выражаются преобразования координат, скоростей и времени при изменении системы отсчёта (Лоренца преобразования ); она входит во многие другие соотношения. Под С. с. в среде с' обычно понимают лишь скорость распространения оптического излучения (света); она зависит от преломления показателя среды n, различного, в свою очередь, для разных частот v излучения (дисперсия света ); с' (n) = c/n (n). Эта зависимость приводит к отличию групповой скорости от фазовой скорости света в среде, если речь идёт не о монохроматическом свете (для С. с. в вакууме эти две величины совпадают). Экспериментально определяя с', всегда измеряют групповую С. с. либо т. н. скорость сигнала, или скорость передачи энергии, только в некоторых специальных случаях не равную групповой.
Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретическом плане и для определения значений других физических величин, но и для практических целей (см. ниже). Впервые С. с. определил в 1676 О. К. Рёмер по изменению промежутков времени между затмениями спутника Юпитера Ио. В 1728 то же проделал Дж. Брадлей , исходя из своих наблюдений аберрации света звёзд. На Земле С. с. первым измерил — по времени прохождения светом точно известного расстояния (базы) — в 1849 А. И. Л. Физо . (Показатель преломления воздуха очень мало отличается от 1, и наземные измерения дают величину, весьма близкую к с.) В опыте Физо пучок света периодически прерывался вращающимся зубчатым диском, проходил базу (около 8 км ) и, отразившись от зеркала, возвращался на периферию диска (рис. 1 ). Падая при этом на зубец, свет не достигал наблюдателя, попадая в промежуток между зубцами, — регистрировался наблюдателем. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил с = 315 300 км/сек.
В 1862 Ж. Б. Л. Фуко реализовал высказанную в 1838 идею Д. Араго , применив вместо зубчатого диска быстровращающееся (512 об/сек ) зеркало. Отражаясь от зеркала, пучок света направлялся на базу и по возвращении вновь попадал на это же зеркало, успевшее повернуться на некоторый малый угол (рис. 2 ). При базе всего в 20 м Фуко нашёл, что С. с. равна 298000 ± 500 км/сек. Схемы и основные идеи опытов Физо и Фуко были многократно использованы на более совершенной технической основе др. учёными, измерявшими С. с. Наибольшего развития метод Фуко достиг в работах А. Майкельсона (1879, 1902, 1926). Полученное им в 1926 значение с = 299/96 ± 4 км/сек было тогда самым точным и вошло в интернациональные таблицы физических величин.
Измерения С. с. в 19 в. не только выполнили свою непосредственную задачу, но и сыграли чрезвычайно большую роль в физике. Они дополнительно подтвердили волновую теорию света (см. Оптика ), уже достаточно обоснованную другими экспериментами (Фуко, 1850, сравнение С. с. одной и той же частоты n в воздухе и воде), а также установили тесную связь оптики с теорией электромагнетизма — измеренная С. с. совпала со скоростью электромагнитных волн, вычисленной из отношения электромагнитной и электростатических единиц электрического заряда (опыты В. Вебера и Ф. Кольрауша в 1856 и последующие более точные измерения Дж. К. Максвелла ). Последнее явилось одним из отправных пунктов при создании Максвеллом электромагнитной теории света в 1864—73. Кроме того, измерения С. с. вскрыли глубокое противоречие в основных теоретических посылках физики того времени, связанных с представлением о мировом эфире . Эти измерения давали аргументы в пользу взаимоисключающих гипотез о поведении эфира при движении через него материальных тел (анализ явления аберрации света английским физиком Дж. Б. Эри в 1871 и Физо опыт 1851, повторённый в 1886 Майкельсоном и Э. Морли, результаты которых поддерживали концепцию частичного увлечения эфира; Майкельсона опыт 1881 и 1887 — последний совместно с Морли, — отвергший какое-либо увлечение эфира). Разрешить это противоречие удалось лишь в специальной теории относительности (А. Эйнштейн , 1905).
В современных измерениях С. с. используется модернизированный метод Физо (модуляционный метод) с заменой зубчатого колеса на электрооптический, дифракционный, интерференционный или какой-либо иной модулятор света, полностью прерывающий или ослабляющий световой пучок (см. Модуляция света ). Приёмником излучения служит фотоэлемент или фотоэлектронный умножитель . Применение лазера в качестве источника света, ультразвукового модулятора со стабилизированной частотой и повышение точности измерения длины базы позволили снизить погрешности измерений и получить значение с = 299792,5 ± 0,15 км/сек. Помимо прямых измерений С. с. по времени прохождения известной базы широко применяются т. н. косвенные методы, дающие ещё большую точность. Так, методом микроволнового вакуумированного резонатора (английский физик К. Фрум, 1958) при длине волны излучения l = 4 см получено значение с = 299792,5 ± 0,1 км/сек. Погрешность определения С. с. как частного от деления независимо найденных l и n атомарных или молекулярных спектральных линий ещё меньше. Американский учёный К. Ивенсон и его сотрудники в 1972 по цезиевому стандарту частоты (см. Квантовые стандарты частоты ) нашли с точностью до 11 знаков частоту излучения СН4 -лазера, а по криптоновому стандарту частоты — его длину волны (около 3,39 мкм ) и получили с = 299792456,2 ± 0,8 м/сек. К настоящему времени (1976) по решению XII Генеральной ассамблеи Международный союза по радиосвязи (1957) принято считать С. с. в вакууме равной 299792 ± 0,4 км/сек.
Знание точной величины С. с. имеет большое практическое значение, в частности в связи с определением расстояний по времени прохождения радио- или световых сигналов в радиолокации , оптической локации и дальнометрии. Особенно широко этот метод применяется в геодезии и в системах слежения за искусственными спутниками Земли ; он использован для точного измерения расстояния между Землёй и Луной и для решения ряда других задач.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.