БСЭ БСЭ - Большая Советская Энциклопедия (КИ) Страница 43

Тут можно читать бесплатно БСЭ БСЭ - Большая Советская Энциклопедия (КИ). Жанр: Справочная литература / Энциклопедии, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

БСЭ БСЭ - Большая Советская Энциклопедия (КИ) читать онлайн бесплатно

БСЭ БСЭ - Большая Советская Энциклопедия (КИ) - читать книгу онлайн бесплатно, автор БСЭ БСЭ

  Основные задачи К. сложного движения заключаются в установлении зависимостей между кинематическими характеристиками абсолютного и относительного движений точки (или тела) и характеристиками движения подвижной системы отсчета, то есть переносного движения. Для точки эти зависимости являются следующими: абсолютная скорость точки равна геометрической сумме относительной и переносной скоростей, т. е.

n a = n oтн + n пер ,

  а абсолютное ускорение точки равно геометрической сумме трёх ускорений — относительного, переносного и поворотного, или кориолисова (см. Кориолиса ускорение ), т. е.

wa = w oтн +wпер +wkop .

  Для твердого тела, когда все составные (то есть относительные и переносные) движения являются поступательными, абсолютное движение также является поступательным со скоростью, равной геометрической сумме скоростей составных движений. Если составные движения тела являются вращательными вокруг осей, пересекающихся в одной точке (как, например, у гироскопа), то результирующее движение также является вращательным вокруг этой точки с мгновенной угловой скоростью, равной геометрической сумме угловых скоростей составных движений. Если же составными движениями тела являются и поступательные, и вращательные, то результирующее движение в общем случае будет слагаться из серии мгновенных винтовых движений (см. Винтовое движение ).

  В К. непрерывной среды устанавливаются способы задания движения этой среды, рассматривается общая теория деформаций и определяются так называемые уравнения неразрывности, отражающие условия непрерывности среды.

  Лит. см. при ст. Механика .

  С. М. Тарг.

Рис. 1 к ст. Кинематика.

Рис. 4 к ст. Кинематика.

Рис. 2 к ст. Кинематика.

Рис. 3 к ст. Кинематика.

Кинематика звёздных систем

Кинема'тика звёздных систе'м, раздел звёздной астрономии; то же, что звёздная кинематика .

Кинематика механизмов

Кинема'тика механи'змов, раздел теории машин и механизмов, в котором изучают геометрическую сторону движения частей (звеньев) механизма, пренебрегая вызывающими его причинами. Исследования К. м. основываются на положении о том, что любой механизм состоит из подвижно соединённых твёрдых тел — звеньев, движения которых определяются движением одного или нескольких звеньев, называемых ведущими.

  К. м. решает задачи кинематического анализа и кинематического синтеза (см. Синтез механизмов ). Основные задачи кинематического анализа: определение положений звеньев, траекторий отдельных точек механизма, угловых скоростей и ускорений звеньев, линейных скоростей и ускорений отдельных точек механизма. Для решения каждой из этих задач должны быть заданы постоянные геометрические параметры механизма, определяющие его кинематические свойства и законы движения ведущих звеньев. Например, для плоского шарнирного механизма (рис. 1 ) должны быть известны расстояния между центрами шарниров и закон движения ведущего звена АВ. Для кулачкового механизма (рис. 2 ) должны быть заданы профиль кулачка 1 и закон его движения, радиус ролика 3, расстояния между центрами шарниров С и D, А и D. Положения звеньев определяют графическими и аналитическими методами.

  Более простые графические методы заключаются в следующем. Если для механизма (рис. 1 ) известно положение звена АВ и расстояния между центрами шарниров, можно положения всех остальных звеньев определить засечками циркуля. Таким образом, задача для плоских механизмов всегда может быть сведена к определению точек пересечения плоских кривых. Графические построения для пространственных механизмов усложняются, т.к. они связаны с определением линий и точек пересечения пространственных фигур. Однако в пределах точности графических построений всегда можно построить положения всех звеньев плоских и пространственных механизмов любой сложности.

  Аналитические методы позволяют определять положения звеньев с заранее заданной точностью. Задача сводится к решению системы нелинейных уравнений. Для типовых механизмов разработаны программы вычислений на ЭВМ.

  Траектории отдельных точек механизма определяют обычно совместно с определением положений звеньев, причём выполняется графическое построение или аналитическое исследование только тех траекторий, от вида которых зависит движение рабочих органов механизма. Траектории, описываемые точками механизма, весьма разнообразны и в некоторых случаях представляют собой сложные плоские или пространственные кривые. Например, траектория, описываемая точкой М (рис. 1 ), является алгебраической кривой 6-го порядка. Траектории точек, лежащих на звене ME, представляют уже кривые 14-го порядка.

  Определение скоростей звеньев и отдельных точек механизмов — наиболее разработанный раздел К. м., располагающий графическими методами кинематических диаграмм и планов скоростей и аналитическим методом. Для определения скоростей какой-либо точки строят диаграмму изменения пути этой точки по времени, используя данные, полученные при определении положений звеньев, а затем, применяя графическое дифференцирование, строят диаграмму изменения скорости по времени (см. Графические вычисления ). Это метод наиболее простой, однако характеризуется небольшой точностью. Метод планов скоростей применим для плоских и пространственных механизмов. При построении планов скоростей используют соотношения между векторами скоростей различных точек механизма. Точность метода планов скоростей, как и всякого графического метода, ограничена, поэтому при исследовании механизмов, для которых требуется повышенная точность кинематического расчёта, предпочтительно применение аналитических методов, которые всегда можно свести к системе линейных уравнений.

  Ускорения точек механизма определяют по планам ускорений и аналитическим методом (решение систем линейных уравнений). Метод кинематических диаграмм для определения ускорений, как правило, не применяется, так как его точность зависит от точности графического дифференцирования, предварительно построенной диаграммы изменения скорости по времени, т. е. при решении, возможно, накопление ошибок. Для некоторых быстроходных механизмов определяют не только ускорения 1-го порядка, но и ускорения 2-го порядка, которые иногда называют рывками. Если точка совершает прямолинейное движение, то ускорение 2-го порядка равно первой производной от ускорения 1-го порядка по времени или третьей производной от пути по времени. Ускорение 2-го порядка находят по плану рывков или аналитическим методом (решение системы линейных уравнений).

  Задачи кинематического синтеза механизмов являются обратными рассмотренным задачам кинематического анализа. Искомыми величинами в них являются постоянные параметры механизма, которые определяются по заданным кинематическим условиям, то есть по траекториям некоторых точек звеньев механизма, скорости и ускорению звеньев и отдельных точек. Задачи синтеза механизмов отличаются большей сложностью, чем задачи кинематического анализа.

  Лит.: Артоболевский И. И., Теория механизмов, 2 изд., М., 1967; Добровольский В. В., Теория механизмов, 2 изд., М., 1953.

  И. И. Артоболевский, Н. И. Левитский.

Рис. 2. Кулачковый механизм.

Рис. 1. Плоский шарнирный механизм.

Кинематика рельефа

Кинема'тика релье'фа, раздел геоморфологии, изучающий изменение взаимного положения точек земной поверхности во времени. В отличие от морфологии и морфометрии, наблюдающих рельеф в статике, К. р. Изучает земную поверхность в движении, но вне зависимости от вызывающих движение сил и агентов. Это последнее ограничение отличает К. р. от динамики рельефа. Понятие «К. р.» предложено советским геоморфологом А. С. Девдариани.

  Лит.: Девдариани А. С., Измерение перемещений земной поверхности, М., 1964.

Кинематическая вязкость

Кинемати'ческая вя'зкость, кинематический коэффициент вязкости, отношение обычного коэффициента вязкости h (называемого также динамическим) к плотности вещества r; обозначается n (см. Вязкость ). Единицей К. в. в Международной системе единиц служит м 2 /сек. Дольная единица К. в. см 2 /сек называется стокс . 1 м 2 /сек = 104 cm.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.