БСЭ БСЭ - Большая Советская Энциклопедия (МО) Страница 73
БСЭ БСЭ - Большая Советская Энциклопедия (МО) читать онлайн бесплатно
Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей «узнавания», самосборки и интеграции) актуальным направлением научного поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых кислот. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитических методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, главные вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование которых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физические экспериментальные подходы (например, использование ЭВМ, синхротронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практического характера, ответ на которые ожидается от М. б., на первом месте стоит проблема молекулярных основ злокачественного роста, далее — пути предупреждения, а быть может, и преодоления наследственных заболеваний — «молекулярных болезней» . Большое значение будет иметь выяснение молекулярных основ биологического катализа, т. е. действия ферментов. К числу важнейших современных направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов , токсических и лекарственных веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б. — познание природы нервных процессов, механизмов памяти и т. д. Один из важных формирующихся разделов М. б. — т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетическим аппаратом (геномом ) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний и исправления генетических дефектов). О более обширных вмешательствах в генетическую основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживающи (например, получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хозяйственных или медицинских важных веществ.
Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных научно-исследовательских центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании — Лаборатория молекулярной биологии в Кембридже, Королевский институт в Лондоне; во Франции — институты молекулярной биологии в Париже, Марселе, Страсбуре, Пастеровский институт; в США — отделы М. б. в университетах и институтах в Бостоне (Гарвардский университет, Массачусетсский технологический институт), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский технологический институт), Нью-Йорке (Рокфеллеровский университет), институты здравоохранения в Бетесде и др.; в ФРГ — институты Макса Планка, университеты в Гёттингене и Мюнхене; в Швеции — Каролинский институт в Стокгольме; в ГДР — Центральный институт молекулярной биологии в Берлине, институты в Йене и Галле; в Венгрии — Биологический центр в Сегеде. В СССР первый специализированный институт М. б. был создан в Москве в 1957 в системе АН СССР (см. Молекулярной биологии институт ); затем были образованы: институт биоорганической химии АН СССР в Москве, институт белка в Пущине, Биологический отдел в институте атомной энергии (Москва), отделы М. б. в институтах Сибирского отделения АН в Новосибирске, Межфакультетская лаборатория биоорганической химии МГУ, сектор (затем институт) молекулярной биологии и генетики АН УССР в Киеве; значительная работа по М. б. ведётся в институте высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и других ведомств.
Наряду с отдельными научно-исследовательскими центрами возникли организации более широкого масштаба. В Западной Европе возникла Европейская организация по М. б. (ЕМБО), в которой участвует свыше 10 стран. В СССР при институте молекулярной биологии в 1966 создан научный совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются «зимние школы» по М. б., проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем научные советы по М. б. были созданы при АМН СССР и многих республиканских Академиях наук. С 1966 выходит журнал «Молекулярная биология» (6 выпусков в год).
За сравнительно короткий срок в СССР вырос значительный отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисленные молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Энгельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Совета Министров СССР (май 1974) «О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве».
Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Сент-Дьердь и А., Биоэнергетика, пер. с англ., М., 1960; Анфинсен К., Молекулярные основы эволюции, пер. с англ., М., 1962; Стэнли У., Вэленс Э., Вирусы и природа жизни, пер. с англ., М., 1963; Молекулярная генетика, пер. с. англ., ч. 1, М., 1964; Волькенштейн М. В., Молекулы и жизнь. Введение в молекулярную биофизику, М., 1965; Гауровиц Ф., Химия и функции белков, пер. с англ., М., 1965; Бреслер С. Е., Введение в молекулярную биологию, 3 изд., М. — Л., 1973; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Энгельгардт В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Введение в молекулярную биологию, пер. с англ., М., 1967; Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967; Финеан Дж., Биологические ультраструктуры, пер. с англ., М., 1970; Бендолл Дж., Мышцы, молекулы и движение, пер. с англ., М., 1970; Ичас М., Биологический код, пер. с англ., М., 1971; Молекулярная биология вирусов, М., 1971; Молекулярные основы биосинтеза белков, М., 1971; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Спирин А. С., Гаврилова Л. П., Рибосома, 2 изд., М., 1971; Френкель-Конрат Х., Химия и биология вирусов, пер. с англ., М., 1972; Смит К., Хэнеуолт Ф., Молекулярная фотобиология. Процессы инактивации и восстановления, пер. с англ., М., 1972; Харрис Г., Основы биохимической генетики человека, пер. с англ., М., 1973.
В. А. Энгельгардт.
Молекулярная генетика
Молекуля'рная гене'тика, раздел генетики и молекулярной биологии , ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетической информации, а также способа её хранения.
М. г. выделилась в самостоятельное направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физических и химических методов (рентгеноструктурный анализ, хроматография, электрофорез, высокоскоростное центрифугирование, электронная микроскопия, использование радиоактивных изотопов и т. д.), что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отдельных компонентов клетки и всю клетку как единую систему. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики. Большую роль в быстром развитии М. г. сыграло перенесение центра тяжести генетических исследований с высших организмов (эукариотов ) — основных объектов классической генетики, на низшие (прокариоты ) — бактерии и многие другие микроорганизмы, а также вирусы. Преимущества использования более простых форм жизни для решения генетических проблем заключаются в быстрой смене поколений у этих форм и возможности изучать одновременно огромное число особей; благодаря этому сильно возрастает разрешающая способность генетического анализа и повышается его точность. Кроме того, сравнительная простота организации бактерий и особенно вирусов облегчает выяснение молекулярной природы генетических явлений. Высказываемое иногда мнение о тождестве М. г. и генетики микроорганизмов ошибочно. М. г. изучает молекулярные основы генетических процессов как у низших, так и у высших организмов и не включает частной генетики прокариотов, занимающей видное место в генетике микроорганизмов.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.