БСЭ БСЭ - Большая Советская Энциклопедия (ЗВ) Страница 9
БСЭ БСЭ - Большая Советская Энциклопедия (ЗВ) читать онлайн бесплатно
Возраст наблюдаемых рассеянных скоплений, как правило, превосходит их время релаксации. Большинство наблюдаемых рассеянных скоплений достигло квазистационарного состояния и многие из них успели сильно обеднеть в результате ухода из них звёзд. Имеются основания считать, что большая часть звёзд Галактики принадлежала в прошлом рассеянным скоплениям и является результатом их распада. Число полностью распавшихся рассеянных скоплений должно во много раз превосходить число рассеянных скоплений, существующих ныне в Галактике. Возраст шаровых скоплений сравним со временем их релаксации. По-видимому, у шаровых скоплений квазистационарного состояния достигли центральной области, где время релаксации меньше, а периферийные области находятся в состоянии, стационарном в регулярном поле. Возраст галактик не превосходит десятков млрд. лет, время релаксации для них в сотни или тысячи раз больше; поэтому галактики далеки от достижения квазистационарного состояния. Некоторые из них, а именно неправильные галактики, даже находятся в нестационарном состоянии либо вследствие того, что это очень молодые системы, либо вследствие деформаций, вызванных взаимодействием при сближении галактик.
Звёздная система, достигшая состояния, стационарного в регулярном поле, имеет плоскость симметрии и перпендикулярную ей ось симметрии. Звёздная система с равным нулю главным моментом вращения в состоянии, стационарном в регулярном поле, может быть сферически симметрична. В квазистационарном состоянии она обязательно сферически симметрична. Траектории звёзд в сферически симметричной системе плоские. В общем случае они незамкнуты и витки одной траектории заполняют кольцо. В системе с плоскостью и осью симметрии траектории не являются плоскими кривыми. Витки одной траектории заполняют трёхмерную область — тор.
Основной задачей звёздной динамики является исследование закономерностей строения и эволюции звёздных систем на основе изучения действующих в них сил. Одним из методов таких исследований является построение теоретических моделей звёздных систем для разных стадий их эволюции, соответствующих конкретным наблюдаемым звёздным системам, в том числе нашей Галактике, др. галактикам, скоплениям галактик, а также рассеянным и шаровым звёздным скоплениям. В теоретической модели должны быть полностью согласованы взаимно влияющие друг на друга распределение звёзд и их движения. Строят также эмпирические модели Галактики и др. галактик, основанные на наблюдаемых данных о распределении плотности материи в них. В эмпирических моделях нет полного согласования распределения звёзд и их движений.
Историческая справка. Начало З. а. было положено в конце 18 в. английским астрономом В. Гершелем, который выполнил несколько статистических исследований («обозрений») звёздного неба. Произведя подсчёты числа звёзд, видимых в поле зрения телескопа в разных участках неба, он обнаружил явление галактической концентрации, т. е. возрастание числа звёзд по мере приближения к галактическому экватору. Это указало на сплюснутость нашей звёздной системы. Гершель построил первую модель нашей звёздной системы — Галактики, определил направление движения Солнца по отношению к окрестным звёздам. Он открыл большое число двойных звёзд, обнаружил у некоторых из них орбитальное движение и таким образом доказал физическую природу их двойственности, а также то, что закон всемирного тяготения И. Ньютона справедлив и за пределами Солнечной системы. В 1847 русский астроном В. Я. Струве, изучая строение Галактики, высказал утверждение о существовании поглощения света в межзвёздном пространстве и об увеличении звёздной плотности (пространственной) при приближении к плоскости симметрии Галактики. В середине 19 в. русским астроном М. А. Ковальский и английским астроном Дж. Эри разработали аналитические методы определения скорости Солнца по собственным движениям звёзд. В конце 19 в. Х. Зелигер и К. Шварцшильд в Германии развили методы исследования пространственного распределения звёзд по их подсчётам. В начале 20 в. голландский астроном Я. Каптейн обнаружил преимущественное направление движений звёзд и предложил гипотезу о существовании двух движущихся навстречу друг другу потоков звёзд. Затем Шварцшильд выдвинул предположение об эллипсоидальном законе распределения скоростей (остаточных) звёзд, более естественно объясняющее наблюдаемые закономерности в движениях звёзд. К этому же времени (до 1922) относятся выполненные Каптейном исследования строения Галактики на основании результатов звёздных подсчётов и анализа собственных движений звёзд. Несмотря на то, что ещё в середине 19 в. Струве пришёл к заключению о существовании поглощения света в Галактике, в начале 20 в. преобладало убеждение о полной прозрачности межзвёздного пространства. Поэтому кажущееся поредение звёзд по мере удаления от Солнца по всем направлениям, вызываемое главным образом поглощением света в межзвёздном пространстве, принималось за действительное уменьшение звёздной плотности по всем направлениям от Солнца. В моделях Каптейна Солнце находилось в центре Галактики.
В 1-й четверти 20 в. астрономы Гарвардской обсерватории (США) закончили обзор спектров сотен тысяч звёзд, а голландский астроном Э. Герцшпрунг и американский астроном Г. Ресселл обнаружили в это же время разделение звёзд поздних спектральных классов на гиганты и карлики и построили диаграмму «спектр — светимость», отражающую статистическую зависимость между спектром звезды и её светимостью. В 1918 американский астроном Х. Шепли нашёл, что центр системы шаровых скоплений расположен далеко от Солнца. Очевидно, что именно центр огромной системы шаровых скоплений (а не рядовая звезда — Солнце) должен совпадать с центром Галактики. Шепли определил направление на центр Галактики и оценил расстояние его от Солнца. В 1917 американские астрономы Дж. Ричи и Х. Кёртис обнаружили в туманностях, имеющих вид спиралей, неожиданно появляющиеся, а затем исчезающие слабые звёзды и определили, что это новые звёзды, аналогичные тем, которые время от времени наблюдаются в Галактике. Стало ясно, что спиральные туманности находятся на громадных расстояниях, вне Галактики, и имеют сравнимые с ней размеры. В 1924—26 американский астроном Э. Хаббл при помощи 2,5-м телескопа разложил (разрешил) на звёзды внешние области трёх спиральных туманностей, в том числе туманности Андромеды и туманности Треугольника, а в 1944 американский астроном У. Бааде при помощи 5-м телескопа разрешил на звёзды несколько эллиптических туманностей и ядра упомянутых спиральных туманностей. Этим окончательно было доказано, что, помимо нашей Галактики, существуют др. звездные системы; их назвали галактиками.
В 1927 голландский астроном Я. Оорт разработал метод исследования вращения Галактики и на основании данных о собственных движениях и лучевых скоростях звёзд обнаружил явление вращения, определил его основные характеристики. Направление на центр вращения совпало с направлением на центр системы шаровых скоплений. В 1932 советский астроном К. Ф. Огородников развил теорию кинематики звёздных систем, в частности Галактики, в которой звёздная система рассматривается не просто как собрание отдельных движущихся звёзд, а как единая система, в движении которой участвует весь объём занимаемого ею пространства. В 1915—20 Дж. Джине и А. Эддингтон (Великобритания), а позднее В. А. Амбарцумян (СССР) и С. Чандрасекар (США) разработали основы звёздной динамики. Б. Линдблад (Швеция) вывел основные динамические соотношения для Галактики. В 1930 американский астроном Р. Трамплер, исследуя большое число рассеянных скоплений, определил, что их расстояния искажаются наличием поглощения света в межзвёздном пространстве, и оценил поглощение света для направлений, близких к плоскости симметрии Галактики. Хаббл исследовал распределение галактик по всему небу. Оказалось, что по мере приближения к галактическому экватору число наблюдаемых галактик быстро убывает, и вблизи галактического экватора (примерно между широтами —10° и +10°) галактик почти нет. Это показало, что поглощающая свет материя сосредоточена в сравнительно тонком слое у плоскости симметрии Галактики. В 1938—47 Амбарцумян установил, что поглощающая свет материя в Галактике имеет клочкообразную структуру.
40-е гг. 20 в. характеризуются исследованиями, которые определили особенности распределения и кинематики звёзд различных типов. Выяснилось, что распределение и кинематика тесно связаны с проблемами происхождения и эволюции звёзд данного типа, звёздных скоплений, межзвёздного газа и пыли. Амбарцумян обнаружил, что горячие звёзды-гиганты (спектральные классы 0 и В0 — В2) образуют группировки, получившие название звёздных ассоциаций. Звёздные ассоциации неустойчивы, следовательно входящие в их состав звёзды — молоды. Их возраст оказался равным 105—107 лет, т. е. намного меньше возраста Земли, Солнца, большей части звёзд Галактики, самой Галактики и др. галактик, который оценивается в миллиарды лет (до десяти миллиардов лет). Т. о., существование звёздных ассоциаций свидетельствует о том, что звездообразование в Галактике продолжается.
Жалоба
Напишите нам, и мы в срочном порядке примем меры.