Чёрная маска из Аль-Джебры - Владимир Артурович Левшин Страница 5

Тут можно читать бесплатно Чёрная маска из Аль-Джебры - Владимир Артурович Левшин. Жанр: Детская литература / Детская образовательная литература. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Чёрная маска из Аль-Джебры - Владимир Артурович Левшин читать онлайн бесплатно

Чёрная маска из Аль-Джебры - Владимир Артурович Левшин - читать книгу онлайн бесплатно, автор Владимир Артурович Левшин

не очень-то хотелось идти к обжорам среднегеометрическим. Но мы всё-таки пошли, и на этот раз нас накормили на славу!

Мы никак не могли понять, в чём дело.

— Может быть, — спрашиваем, — у вас делят не поровну?

— Нет, — говорят, — тоже поровну.

— Так, может быть, — спрашиваем, — вы не обжоры?

— Нет, — говорят, — обжоры.

— Откуда же у вас такие запасы?

Тут они нам и объяснили. Дело в том, что собранные продукты они не складывают, а перемножают. То есть не продукты, конечно, а количество их.

Один, скажем, снял с грядки четыре килограмма огурцов, а другой опять-таки девять:

4 • 9 = 36.

Ты, наверное, думаешь, что тридцать шесть надо разделить на два? А вот и нет. Обжоры среднегеометрические и тут поступают по-своему. Они не делят, а извлекают из полученного произведения корень. Да, да, не удивляйся: у чисел есть корни и их можно извлекать. Об этом нам ещё в прошлый раз рассказала Тройка с чемоданчиком на проспекте Действующих Знаков. Эти самые знаки высыпались у неё из чемоданчика прямо на тротуар.

Помножь три на три. Получится девять. Знаешь, что ты сделал? Ты возвёл три во вторую степень. Если же ты хочешь возвести три в третью степень, помножь его само на себя три раза. Получится двадцать семь. Пятая степень трёх будет уже двести сорок три…

Так можно возвести число и в сотую, и в двухсотую, и в какую хочешь степень.

А теперь ответь на такой вопрос: какое число нужно возвести во вторую степень, чтобы получить девять? Разумеется, три. Вот это три и есть корень второй степени из девяти.

Стало быть, извлечение корня — действие, обратное возведению в степень. Совсем как вычитание — действие, обратное сложению, а деление — умножению.

Так вот, из числа тридцать шесть среднегеометрические обжоры извлекают корень квадратный, иначе говоря, корень второй степени. Получается шесть.

Выходит, каждому обжоре досталось по шести килограммов огурцов. Это немного меньше, чем получил бы обжора среднеарифметический. Но зато при такой делёжке один килограмм остаётся в запасе.

Тут мне пришло в голову, что обжор среднегеометрических тоже ведь не двое, а гораздо больше. Ну и что ж, ответили мне, каждый соберёт своё количество килограммов, мы все эти числа перемножим…

— И извлечёте корень второй степени? — перебил я.

— Что вы, что вы, — возмутились обжоры, — мы извлечём корень той степени, сколько у нас жителей!

Таня поинтересовалась, как обжоры обозначают такое действие.

Как? Да очень просто: закорючкой, которая похожа на сачок для ловли бабочек и называется радикалом. Только над сачком порхает не бабочка, а число, обозначающее степень корня. И называется оно показателем корня.

√36 = 6.

Если в посёлке четверо обжор, извлекается корень четвёртой степени:

4√

Ну, а если сто четыре? Тогда и корень будет сто четвёртой степени:

104√

Ты небось хочешь знать, почему это над радикалом не ставится двойка, когда извлекается корень квадратный? Почему, почему… Просто так уж условились.

Из всего, что мы увидели в Обжорах, мы с Таней поняли, что среднее арифметическое всегда больше среднего геометрического. Но Олег сообразил, что вовсе не всегда. Если бы жители Обжор собирали все до одного одинаковый урожай, среднее геометрическое и среднее арифметическое тоже были бы совершенно одинаковы. Не веришь? Я тоже сначала не поверил. Но Олег доказал.

Допустим, двое собрали по восьми килограммов огурцов. Среднее арифметическое найдётся так:

8 + 8/2 = 8.

А среднее геометрическое так:

√(8 • 8) = 8.

Вещий Олег!

Среднегеометрические обжоры долго нас не отпускали. Да и нам не хотелось расставаться с такими гостеприимными хозяевами. Но стручок в кармане у Олега так разбушевался, что нам пришлось попрощаться.

Все высыпали нас провожать. Каждый тащил на дорогу что ни попало: кто помидоров, кто яблок… Но вкуснее всего были пирожки. Жаль, ты не попробовал! Всем нам досталось по-разному. Олегу — четыре, Тане — два, а мне — один. Я, понятно, плакать не стал. Но ребята сами решили разделить пирожки по-честному.

Сначала попробовали делить, как обжоры среднеарифметические. Сложили число пирожков:

4 + 2 + 1 = 7.

А семь разделили на три. Получилось по два и одной трети пирожка на брата. Не очень-то удобно. Во-первых, у нас нет ножа. Да если б и был, всё равно разделить пирожок на три равные доли очень трудно. И потом, как же Пончик? Он хоть и маленький, но ведь и ему есть надо!

Тогда решили вычислить среднее геометрическое.

Сначала число пирожков перемножили:

4 • 2 • 1 = 8.

А потом из восьми извлекли корень третьей степени:

3√8 = 2.

Вот и вышло по два пирожка на душу населения. А один остался для Пончика.

В общем, неплохо провели время. Но мне всё равно досадно. Ведь не из-за пирожков мы сюда пришли, а из-за Чёрной Маски! А о ней пока ни гугу. В следующий раз меня в это бешеное подземелье никакими пирожками не заманишь. Будь здоров.

Сева.

Воздушная монорельсовая дорога

(Таня — Нулику)

Вот, Нулик, наконец наступила и моя очередь писать. Дожидаться пришлось долго, зато есть о чём порассказать. Понимаешь, мы в первый раз побывали на воздушной, монорельсовой дороге.

Чтобы тебе зря не ломать голову, скажу сразу: монорельсовая — значит, с одним рельсом. «Монос» — слово греческое и означает «один».

Вообще-то надземные дороги теперь строят всюду. Но эта совсем, совсем особенная. Не знаю только, сумею ли я описать всё как следует. На всякий случай наберись терпения и читай внимательно.

Представь себе, что твоя мама выстирала бельё и хочет его развесить. И вот она берёт верёвку и натягивает туго-натуго прямо в воздухе. Верёвка такая длинная, что концов её не видно. А вместо белья на ней висят маленькие разноцветные вагончики. Бельё прикрепляют к верёвке зажимом, а у вагончиков имеется для этого специальное колёсико на крыше.

Конечно, мама не смогла бы натянуть такую длинную верёвку. Тем более, что это вовсе не верёвка, а стальной рельс и концы его уходят неведомо куда.

Вдоль рельса, немного пониже, тянется такая же бесконечная платформа, и на ней, совсем как на линейке, на равном расстоянии друг от друга расположены

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.