Лоран Сексик - Эйнштейн Страница 12

Тут можно читать бесплатно Лоран Сексик - Эйнштейн. Жанр: Документальные книги / Биографии и Мемуары, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Лоран Сексик - Эйнштейн читать онлайн бесплатно

Лоран Сексик - Эйнштейн - читать книгу онлайн бесплатно, автор Лоран Сексик

Чтобы попытаться разрешить противоречие между двумя противоположными и несовместимыми версиями (что же такое свет: волна или частицы?), Эйнштейн применит статистическую механику. Он воспользовался теорией вероятностей, перенеся ее в область излучения. Он начал с происхождения световых пучков. Нагретый металл излучает электроны. Полученная световая энергия переносится «квантами» (позже их станут называть фотонами). Это фотоэлектрический эффект (он известен: его открыл Герц в 1887 году, а Ленард[30] получит за него Нобелевскую премию). Энергия квантов пропорциональна частоте нагревания металлического тела (чем больше раскаляется металл, тем больше энергия, тем ярче свет).

Спектр света зависит от частот светоизлучения. Но почему при определенных частотах не возникает светового луча? Планк отступил перед этим препятствием. Эйнштейн его преодолеет. На его взгляд, здесь не действует сплошной закон — всё или ничего. А значит, не существует «сплошного светового поля». Применяя статистические расчеты, Эйнштейн обнаружил, что световая энергия выделяет не кванты, как думал Планк, а порции квантов. По Эйнштейну, если энергии квантов недостаточно (порция слишком мала), она не позволяет отделить материю — электрон. А без излучения этого электрона не будет видимого света.

Эйнштейн опирался на труды Максвелла о природе энергии электромагнитных явлений, применяя их к свету. Его вероятностный подход, отличавшийся от подхода Планка, породил формулу энтропии[31] излучения в заданном объеме. Из этого он вывел отношение между энергией и частотой:

E = hv,

которую он приписал свойству излучения. И вывод: энергия света распределяется в пространстве дискретно в форме квантов света.

То, что Планк считал математической уловкой, Эйнштейн сделал основой своей теории. Он ввел в физику квантование световой энергии. Фотоэлектрический эффект объясняется «гипотезой о квантах света».

Планк уже выполнил часть этой работы в 1900 году: константа Планка никуда не делась. Повысив температуру, увеличим частоту, получим энергию более высокого спектра, например фиолетового. Но тайна дискретного распространения света оставалась неразгаданной.

По Планку, дискретность спектра световой энергии невозможно объяснить. По Эйнштейну, его прерывистое излучение обусловлено частотой колебания. Свет обладает свойствами волн и корпускулярной составляющей. Немыслимый парадокс: частицы не могут обладать свойствами волн, а волны — свойствами частиц. Частота колебания и частицы несовместимы. Либо волновая природа, либо корпускулярная: наука заставляет выбирать. Эйнштейн не выбирает. Точнее, он выбирает и то и другое. Он опирается на труды Максвелла и Больцмана о распределении энергии колебания электронов в теле и принимает парадоксальное сочетание волновых и корпускулярных свойств.

Поскольку поля фотонов не могут заполнить всё пространство, ученый утверждает концепцию дискретности светового излучения. Эйнштейн объединяет понятие кванта с понятием «вероятности» волнового колебания. Энергия становится пропорциональна частоте. С точки зрения классической физики — полнейшая чушь! Для современной науки — огромный прогресс!

Заключение Эйнштейна: свет состоит из дискретного потока частиц, перемещающихся с энергией, которая зависит лишь от частоты колебаний.

Волновой и корпускулярный дуализм, отсутствие причинности этих процессов — выводы парадоксальные, невиданно смелые. Это теория порождения и преобразования света по Эйнштейну.

Следуя за другими, но превзойдя их, Эйнштейн дал определение природы света. Именно этот прорыв в постижении световых явлений принес ему в 1922 году Нобелевскую премию за 1921 год, хотя и не был так революционен, как его теория относительности.

ОТ БЕРНА ДО БЕРЛИНА

1906 год. Пять статей, которые произведут переворот в науке, опубликованы в ведущем физическом журнале мира. Эйнштейн на седьмом небе? Ходит с гордо поднятой головой, мечтая о реванше, мимо Политехникума, отказавшегося от его услуг? Купается ли он в счастье? Проникнута ли им его жизнь, его взгляды, поступки?

Каждое утро Альберт идет пешком в патентное бюро. По дороге рассматривает большую Часовую башню, одновременно незыблемую и изменчивую. На его лице безмятежность — ни усталости, ни радости. Башня остается на своем месте. Зато Эйнштейн уже шесть раз сменил жилье в маленьком Берне. От комнатки прислуги на Герехтигкайтсгассе, где он написал первые наброски к статьям в 1902 году, до дома на Эгертенштрассе, где прожил с Милевой до 1909 года.

15 января 1906-го он, наконец, получил докторскую степень в Цюрихском университете за диссертацию «О новом определении размера молекул».

На самом деле в его немного тусклом существовании ничего не изменилось. Его слегка усталая походка, когда он переходит дорогу, чтобы попасть в контору, осталась прежней. Дни утекали без веселья, без печали. Поначалу Альберт нетерпеливо ждал почтальона в надежде получить известие, которое всколыхнет трясину жизни. Теперь он проходит мимо почтового ящика, даже не взглянув на него. Его нетерпение заледенело. Он ждет того рокового дня, когда ему придется считать себя непонятым. В несколько месяцев ученый оказался низвергнут с головокружительных вершин творчества в холодную пустыню меланхолии.

Одна-единственная радость озарила его хмурые дни: 14 мая 1904 года родился его первый сын Ганс Альберт. Этот миг останется одним из счастливейших в жизни четы, кульминацией его жизни с Ми-левой. Он затушует воспоминание о первых родах. Хотя ничто не сможет вытравить чувство трусости и непорядочности по отношению к Лизерль. Ребенок не клин, который можно вышибить другим.

Тогда, в мае, обезумевший от радости Эйнштейн, узнав о разрешении от бремени, мчался по городским улицам. Отер лоб матери, нежно поцеловал ее в губы, потом взял на руки младенца, затанцевал с ним, прижал сына к груди, смотрел на него с нежностью и тревогой. Возможно, к слезам радости примешалось немного горечи, угрызений совести. Но в дневном свете предстал только образцовый отец, распахнувший свое сердце для маленького лопочущего существа.

Во все времена, что бы ни происходило, какие бы трагедии ни разыгрывались, какие бы расстояния их ни разделяли, Эйнштейн сохранял безоглядную любовь к своему потомству. Великолепный отец? Наверное, не стоило требовать такого от гения, стремящегося непременно довести до конца дело своей жизни. Но это был заботливый отец, который всегда оказывался рядом в минуту горя и радости.

Он проживал другие беззаботные моменты во время собраний академии «Олимпия» с Соловиным, Габихтом и Бессо. В большой бернской пивной, где они проводили свои заседания, перекраивали мир, рассуждали о революции, которую совершат труды Эйнштейна. Строили безумные планы. Пили за славное будущее. Только эти четыре восторженных человека как будто верили в великий перелом в физике. Известность? Да, официант из пивной узнаёт Альберта, предоставляет ему лучший столик, кланяется, когда тот уходит обратно в темную ночь. В маленьком швейцарском городке всё тихо и мирно. Предвещают ли тени, перебегающие дорогу, грандиозную судьбу Эйнштейну? Может быть, где-то его что-то ждет? Смысл жизни, дорога славы? Или же его статьи так и останутся лежать в «Анналах физики», точно в забытом погребе? Дни идут, и, глядя на реку Ааре, он испытывает чувство, будто бросил в море бутылку. Пергамент, просунутый внутрь, так и останется непрочтенным.

Единственного успеха будущий нобелевский лауреат добился в патентном бюро. Ему дали прибавку к жалованью и произвели в эксперты второго класса за прилежание в работе.

В 1908 году его, наконец, допустили к преподаванию в Бернском университете. Он получил звание приват-доцента с чисто символической оплатой. Он будет читать лекции о кинетической теории и теории излучения. Несколько месяцев на его занятия будут приходить три-четыре студента — в основном знакомые: Микеле Бессо, его сестра Майя…

Он мечтает о славе и по-прежнему убежден, что она неизбежно придет. Его сомнения — песок на утесе уверенности, который сметет ветром ближайшего будущего. Он продвигается в своих исследованиях. Его уверенность непоколебима, его честолюбие не ослабло. Он намерен продолжить построение теории относительности и распространить ее на все системы координат: эта теория пока еще ограничена одной системой отсчета. Ньютон остается для него образцом для подражания. Он создаст свою теорию гравитации. Ту, которая будет управлять ходом звезд и движением людей. Он привержен своему любимому методу рассуждения. «Мысленный эксперимент». Этот метод, презираемый большинством исследователей, но дорогой Галилею и Копернику, не опирается на мудреные теоретические расчеты или на взрывную смесь редких веществ. Воображаемые эксперименты — порождение прагматизма, интуиции и творческого гения. Они произрастают на почве знания и учености и применяются к исследованию природных явлений. Именно таким образом Галилей открыл свои законы падения тел.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.