Домашний_компьютер - Домашний компьютер №8 (122) 2006 Страница 29

Тут можно читать бесплатно Домашний_компьютер - Домашний компьютер №8 (122) 2006. Жанр: Компьютеры и Интернет / Прочая околокомпьтерная литература, год неизвестен. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

Домашний_компьютер - Домашний компьютер №8 (122) 2006 читать онлайн бесплатно

Домашний_компьютер - Домашний компьютер №8 (122) 2006 - читать книгу онлайн бесплатно, автор Домашний\_компьютер

Старшее поколение наверняка обрадуется (а младшее чрезвычайно огорчится) наличию функции, позволяющей блокировать веб-страницы целиком, либо по ключевым словам, либо по URL. Откройте окно свойств модуля «Содержимое» и впишите «криминальные» слова, страницы с которыми должны блокироваться. К слову сказать, на вкладке Разное» Редактировать вы можете изменить текст сообщения, которое будет появляться вместо заблокированной страницы (здесь все зависит от вашей фантазии).

Все большее число файрволов оснащается модулем для борьбы с программами-шпионами и прочей нечистью – Outpost в их числе (модуль Anti-Spyware). Безусловно, такой сервис более чем актуален, только не следует забывать об обновлениях сигнатур, содержащих записи о программах-паразитах: меню Сервис» Проверить обновления базы spyware. Кстати, там же включена опция для автоматического обновления программных компонентов.

Не забывайте, что любой толковый брандмауэр защитит ваш компьютер с изначальными настройками, но сделать защиту по-настоящему гибкой сможете только вы. А русифицированные интерфейс и программная «Справка» Outpost Firewall в этом вам помогут.

Физкульт-привет!

Автор: Дмитрий Лаптев.

© 2003-2006, Издательский дом | http://www.computerra.ru/

Журнал «Домашний компьютер» | http://www.homepc.ru/

Этот материал Вы всегда сможете найти по его постоянному адресу: /2006/122/284580/

Часто ли нам приходится присутствовать при рождении нового класса компьютерных компонентов? Еще как нечасто! Однако, прямо сейчас, набрав в известной поисковой системе словечко PhysX, вы имеете возможность убедиться, что карты на этом процессоре уже доступны в рознице, причем двух производителей – ASUS и BFG. Физические игровые ускорители, таким образом, обрели физически-осязаемую сущность. Можно ли обойти это событие вниманием? Вопрос риторический!Не в fps счастье

Сразу заметим, что подходить к оценке новинки, сама перспектива появления которой еще несколько месяцев назад многими считалась «уткой», исключительно с потребительскими мерками целесообразности покупки «здесь и сейчас», по меньшей мере, неостроумно. Гораздо уместнее оценить почин, благо, как это всегда бывает в случае с новыми графическими эффектами, попробовать на зуб ростки «реалистичной физики» нам уже вполне позволяют.

Пока на сегодняшний день вышла в свет только одна игра с реализованной аппаратной поддержкой физических расчетов – Tom Clancy’s Ghost Recon Advanced Warfighter (в просторечье – GRAW), а также имеется и некоторое количество демо-версий готовящихся игр. Однако, список игр, которые должны выйти в ближайшие несколько лет, превышает сотню, да и число разработчиков, планирующих задействовать физический движок от AGEIA в своих играх, достаточно внушительно и перевалило за 60.

Но в первую очередь хотелось бы высказать решительное «фи» в адрес отдельных поверхностно смотрящих коллег, которые, мимоходом оценив новинку по шаблонам, принятым для тестирования видеокарт, возмущенно резюмировали: за что платить $300, если никакой прибавки «кадров в секунду» в распространенных тестах и играх она не обеспечивает?

Действительно, fps после установки физического ускорителя не увеличивается. Но пора определиться с ложными и истинными приоритетами – наращивание частоты кадров выше 50-60 в секунду никак не отражается на увлекательности игрового процесса. Гораздо актуальнее потратить дополнительную мощность на качественное улучшение игрового процесса, а именно такая задача стоит перед физическими ускорителями.

Согласитесь, большинство из нас, запуская новую игру, вовсе не желают пройти ее как можно скорее и приняться за следующую. Хочется получить некое эстетическое удовольствие, эмоциональную разрядку, да просто приятно провести время. Именно поэтому графические «излишества», стремление к фотографической реалистичности и новым ощущениям от игрового процесса востребованы, хотя их получение стоит все дороже. Причем в равной степени и для разработчиков игр (бюджет знаковых игр, собирающих «кассу», подстать кинопродукции), и для игроков, щедро спонсирующих производителей видеокарт, процессоров и прочих компонентов, покупать которые нам все чаще рекомендуют «парами».

Так что же именно способен добавить физический ускоритель, и в частности, «первая ласточка» в новом классе игровой периферии – карта на основе AGEIA PhysX, – к игровому процессу?

Ответ прост – динамику, возможность взаимодействовать с предметами, ранее представленными в играх как статичные декорации. Причем в отличие от ранее жестко запрограммированных сценариев поведения «взрываемых» бочек, коробок и прочих стандартных объектов (пройдя несколько уровней, пользователь наизусть заучивал последствия своих действий, дозволенных игрой), теперь вы вовсе не встретите однообразия. Ведь последствия любого взаимодействия зависят от угла приложения, силы и массы других факторов – в жизни даже нарочно трудно устроить два идентичных по последствиям «погрома». Разумеется, у первого поколения ускорителей мощность не столь велика, и неизбежные огрехи в драйверах еще мешают насладиться подлинной реалистичностью. Но и сейчас успехи видны невооруженным глазом, и кроме свободы взаимодействия с игровым миром, можно отметить чуть более реалистичное «поведение» огня, воды, ткани, волос и прочих текучих и свободно подвижных субстанций. Но почему все это до сих пор составляло проблему?

Физика вчера

Задача моделирования взаимодействия нескольких предметов игрового мира между собой – наиболее ресурсоемкая среди тех, что возникают при программировании игрового движка. Строго говоря, узнать, столкнулись ли два «идеальных» объекта и какое положение они должны занять после взаимодействия – задача несложная и описывается известными каждому школьнику законами. Но если в кадре оказывается хотя бы десяток подвижных тел различной природы и свойств, то объем работы, ложащейся на процессор (и, что самое главное, выполнить ее необходимо в реальном времени), становится угрожающим. А надо учесть, что для полноценного моделирования не только твердых, но и эластичных объектов, жидкостей и, тем более, так любимых игровыми дизайнерами взрывов, количество частиц в кадре, поведение которых рассчитывается независимо друг от друга, необходимо увеличить до нескольких тысяч.

Не секрет, что сегодня многие природные явления в играх реализуются искусственным путем, например, вместо «честного» отображения тумана, используются так называемые алгоритмы затуманивания. Иными словами, модифицируются текстуры твердых объектов заднего плана. Тогда как настоящий туман состоит из водяных капель и не бывает абсолютно однородным. Список «несовершенств» можно продолжать и продолжать, многие из них на первый взгляд покажутся несущественными, однако особенность человеческого восприятия в том, что фальшь, даже не очень явная, подсознательно отмечается и мешает состояться эффекту присутствия.

Наглядный образец реализации «физики» силами центрального процессора представляет собой игра Painkiller. Притом что эффекты в ней отнюдь нельзя назвать идеально реалистичными, да и сама игра вышла довольно давно, она является весьма тяжелой даже по меркам самых мощных современных процессоров. Иными словами, производительность в этой игре упирается в центральный процессор, даже если вы установите дорогую видеокарту, тогда как в остальных играх с упрощенной физической моделью основная нагрузка приходится на видеоакселератор. Законный вопрос: почему же, несмотря на совершенствование центральных процессоров, им все еще не по силам столь естественно-научная задача?

Дело в том, что центральные процессоры, в том числе и двухъядерные, все еще плохо справляются с обработкой большого числа самостоятельных потоков, а для физических расчетов, равно как и графических, это – принципиальный вопрос. Работу универсального процессора можно сравнить с работой справочного окошка, где берутся ответить на все вопросы. Даже если в это окошко усадить чрезвычайно сообразительного оператора, его производительность не сможет сравниться с работой нескольких окошек, в каждом из которых готовы ответить лишь на ограниченный круг вопросов.

Графические процессоры на сегодняшний день имеют до 48 конвейеров, AGEIA PhysX – 16 специализированных исполнительных модулей. Разумеется, такое количество вычислительных блоков требует весьма существенного усложнения кристалла – большого количества транзисторов и сложной управляющей логики (диспетчера) для распределения нагрузки. Учитывая, что при производстве таких чипов применяются менее прогрессивные технологические процессы, нежели для центральных процессоров, частота специализированных процессоров не превышает гигагерца. Тем не менее, на своих задачах они по производительности превосходят универсальные процессоры, как минимум, в десятки раз. И такой прирост есть смысл реализовывать с точки зрения разработчиков игр – программисты, как известно, не склонны тратить силы на оптимизацию, которая все равно не дает заметного на глаз результата. Именно поэтому массово и всерьез «затачивать» физику под двухъядерные процессоры они не торопятся, осознавая, что результат не оправдает потраченных средств. А вот в поддержку едва вышедших физических ускорителей высказались более чем дружно.

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.