РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров Страница 6

Тут можно читать бесплатно РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров. Жанр: Научные и научно-популярные книги / Прочая научная литература, год -. Так же Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте Knigogid (Книгогид) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно

РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров - читать книгу онлайн бесплатно, автор РАЛЬФ РАЛЬФ ВИНС

Таким образом, мы можем сказать, что существует некий делитель (число между 0 и 1) наибольшего предполагаемого убытка для определения количества контрактов. Например, если при счете в 50 000 долларов вы ожидаете, в худшем случае, убыток 5000 долларов на контракт, и открыто 5 контрактов, то делителем будет 0,5, так как:

50 000/(5000/0,5) =5

Другими словами, у вас есть 5 контрактов на счет в 50 000 долларов, т. е. 1 кон­тракт на каждые 10000 долларов баланса. Вы ожидаете в худшем случае потерять 5000 долларов на контракт, таким образом, вашим делителем будет 0,5. Если бы у вас был один контракт, то делителем в этом случае было бы число 0,1, так как:

50 000/(5000/0,1)=1

Этот делитель мы назовем переменной f. Таким образом, сознательно или подсоз­нательно при любой сделке вы выбираете значение f, когда решаете, сколько кон­трактов или акций приобрести.

Теперь посмотрите на рисунок 1-1. На нем представлена игра, где у вас 50% шансов выиграть 2 доллара против 50% шансов потерять 1 доллар в каждой игре. Отметьте, что здесь оптимальное f составляет 0,25, когда TWR составляет 10,55 после 40 ставок (20 последовательностей +2, -1). TWR — это «относитель­ный конечный капитал» (Terminal Wealth Relative), он представляет доход по ва­шим ставкам в виде множителя. TWR = 10,55 означает, что вы увеличили бы в 10,55 раз ваш первоначальный счет, или получили бы 955% прибыли. Теперь посмотрите, что произойдет, если вы отклонитесь всего лишь на 0,15 от опти­мального f= 0,25. Когда f равно 0,1 или 0,4, ваш TWR = 4,66. Это не составляет даже половины того, что будет при 0,25, причем вы отошли только на 0,15 от оп­тимального значения и сделали только 40 ставок!

О какой сумме в долларах мы говорим? При f = 0,1 вы ставите 1 доллар на каж­дые 10 долларов на счете. При f= 0,4 вы ставите 1 доллар на каждые 2,50 долларов на счете. В обоих случаях мы получаем TWR = 4,66. При f= 0,25 вы ставите 1 дол­лар на каждые 4 доллара на счете. Отметьте, что если вы ставите 1 доллар на каж­дые 4 доллара на счете, то выигрываете в два раза больше после 40 ставок, чем в случае ставки одного доллара на каждые 2,50 доллара на вашем счете! Очевидно, что не стоит излишне увеличивать ставку. При ставке 1 доллар на каждые 2,50 доллара вы получите тот же результат, что и в случае ставки четверти этой суммы, то есть 1 доллар на каждые 10 долларов на вашем счете! Отметьте, что в игре 50/50, где вы выигрываете вдвое больше, чем проигрываете, при f= 0,5 вы только «оста­етесь при своих»! При f больше 0,5 вы проигрываете в этой игре, и теперь оконча­тельное разорение — это просто вопрос времени! Другими словами, если f (в игре 50/50, 2:1) на 0,25 отклоняется от оптимального, вы будете банкротом с вероят­ностью, которая приближается к определенности, если продолжать играть доста­точно долго. Таким образом, нашей целью будет объективный поиск пика кривой f для данной торговой системы.

0,05 0,15 0,25 0,35 0,45 0,55 0,65 0,75 значения f

Рисунок 1-1 20 последовательностей +2, -1

В этой книге определенные концепции освещаются с позиции азартных игр. Основное отличие азартной игры от спекуляции заключается в том, что азар­тная игра создает риск (и отсюда многие настроены против нее), в то время как спекуляция является переходом уже существующего риска (предположи­тельного) от одной стороны к другой. Иллюстрации азартных игр использу­ются для наглядного примера излагаемых концепций. Математика управления капиталом и принципы, используемые в торговле и азартных играх, доволь­но похожи. Основная разница состоит в том, что в математике азартных игр мы обычно имеем дело с бернуллиевыми результатами (только два возмож­ных исхода), в то время как в торговле мы сталкиваемся со всем распределе­нием результатов, которые только могут быть в реальной сделке.

Основные концепции

Вероятность задается числом от 0 и 1, которое определяет, насколько вероятен ре­зультат, где 0 — это полное отсутствие вероятности происхождения определенного события, а 1 означает, что рассматриваемое событие определенно произойдет. Про­цесс независимых испытаний (отбор с замещением) является последовательностью результатов, где значение вероятности постоянно от одного события к другому Бросок монеты является примером такого процесса. Каждый бросок имеет вероят­ность 50/50 независимо от результата предыдущего броска. Даже если последние 5 раз выпадал орел, вероятность того, что при следующем броске выпадет орел, все равно не изменяется и составляет 0,5.

Другой тип случайного процесса характеризуется тем, что результат предыду­щих событий влияет на значение вероятности, и, таким образом, значение веро­ятности непостоянно от одного события к другому Эти виды событий называют­ся процессами зависимых испытаний (отбор без замещения). Игра «21 очко» являет­ся примером такого процесса. После того как вытаскивают карту, состав колоды изменяется. Допустим, что новая колода перемешивается и одна карта удалена, скажем, бубновый туз. До удаления этой карты вероятность вытянуть туза была 4/52, или 0,07692307692. Теперь, когда туза вытащили из колоды и не вернули об­ратно, вероятность вытянуть туза при следующем ходе составляет 3/51, или 0,05882352941.

Различие между независимыми и зависимыми испытаниями состоит в том, что вероятность или фиксирована (независимые попытки), или меняется (зависимые попытки) от одного события к другому, в зависимости от предыдущих результатов. Фактически это и есть единственное различие.

Серийный тест

Когда в случае с колодой карт мы проводим отбор без замещения, можно путем проверки определить, существует ли зависимость. Для определенных событий (таких, как поток прибыли и убытков по сделкам), где зависимость не может быть определена путем проверки, мы будем использовать серийный тест. Серий­ный тест подскажет нам, имеет ли наша система больше (или меньше) периодов последовательных выигрышей и проигрышей, чем случайное распределение.

Цель серийного теста — найти счет Z для периодов выигрышей и проигрышей в системной торговлеe. Счет Z означает, на сколько стандартных отклонений вы удалены от среднего значения распределения. Таким образом, счет Z = 2,00 озна­чает, что вы на 2,00 стандартных отклонения удалились от среднего значения (ожидание случайного распределения периодов выигрышей и проигрышей).

Счет Z — это просто число стандартных отклонений, на которое данные отстоят от среднего значения нормального распределения вероятности. Например, счет Z

в 1,00 означает, что данные, которые вы тестируете, отклонены на 1 стандартное отклонение от среднего значения.

Счет Z затем переводится в доверительную границу, которая иногда также на­зывается степенью достоверности. Площадь под кривой нормального распреде­ления вероятности шириной в 1 стандартное отклонение с каждой стороны от среднего значения равна 68% всей площади под этой кривой. Преобразуем счет Z в доверительную границу. Связь счета Z и доверительной границы следующая: счет Z является числом стандартных отклонений от среднего значения, а довери­тельная граница является долей площади под кривой, заполненной при таком числе стандартных отклонений.

Доверительная Счет Z граница(%) 99,73 3,00 99 2,58 98 2,33 97 2,17 96 2,05 95,45 2,00 95 1,96 90 1,64

При минимальном количестве 30 закрытых сделок мы можем рассчитать счет Z. Попытаемся узнать, сколько периодов выигрышей (проигрышей) можно ожи­дать от данной системы? Соответствуют ли периоды выигрыша (проигрыша) тес­тируемой системы ожидаемым? Если нет, существует ли достаточно высокая до­верительная граница, чтобы допустить, что между сделками существует зависи­мость, т.е. зависит ли результат текущей сделки от результата предыдущих сделок? Ниже приведено уравнение серийного теста. Счет Z для торговой системы равен:

(1.1) Z=(N*(R-0,5)-Х)/((Х*(Х-N))/(N-1))^(1/2), где

N = общее число сделок в последовательности;

R = общее число серий выигрышных или проигрышных сделок;

X=2*W*L;

W = общее число выигрышных сделок в последовательности;

L = общее число проигрышных сделок в последовательности.

Этот расчет можно провести следующим образом:

1. Возьмите данные по вашим сделкам:

A) Общее число сделок, т.е. N.

Б) Общее число выигрышных сделок и общее число проигрышных сделок.

Теперь рассчитайте X.

Х = 2 * (Общее число выигрышей) * (Общее число проигрышей).

B) Общее число серий в последовательности, т.е. R.

2. Предположим, что произошли следующие сделки:

-3, +2, +7, -4, +1, -1, +1, +6, -1, 0, -2, +1.

Чистая прибыль составляет +7. Общее число сделок 12, поэтому N = 12. Теперь нас интересует не то, насколько велики выигрыши и проигрыши, а то, сколько было выигрышей и проигрышей, а также серий. Поэтому мы можем переделать наш ряд сделок в простую последовательность плюсов и минусов. Отметьте, что сделка с нулевой прибылью считается проигрышем. Таким образом:

Перейти на страницу:
Вы автор?
Жалоба
Все книги на сайте размещаются его пользователями. Приносим свои глубочайшие извинения, если Ваша книга была опубликована без Вашего на то согласия.
Напишите нам, и мы в срочном порядке примем меры.
Комментарии / Отзывы
    Ничего не найдено.