РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров Страница 7
РАЛЬФ РАЛЬФ ВИНС - Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров читать онлайн бесплатно
Х = 2 * (Общее число выигрышей) * (Общее число проигрышей).
B) Общее число серий в последовательности, т.е. R.
2. Предположим, что произошли следующие сделки:
-3, +2, +7, -4, +1, -1, +1, +6, -1, 0, -2, +1.
Чистая прибыль составляет +7. Общее число сделок 12, поэтому N = 12. Теперь нас интересует не то, насколько велики выигрыши и проигрыши, а то, сколько было выигрышей и проигрышей, а также серий. Поэтому мы можем переделать наш ряд сделок в простую последовательность плюсов и минусов. Отметьте, что сделка с нулевой прибылью считается проигрышем. Таким образом:
- + + - +-++---+
Как видно, последовательность состоит из 6 прибылей и 6 убытков, поэтому X =2 * 6 * 6 = 72. В последовательности есть 8 серий, поэтому R = 8. Мы называем серией каждое изменение символа, которое встречается при чтении последовательности слева направо (т.е. хронологически).
1. Последовательность будет выглядеть следующим образом:- + + - +-++---+ т.е. 1 2 3 4 5 6 7 8
2. Вычислите значение выражения:
N*(R-0,5)-X Для нашего примера:
12* (8 -0, 5) -72
12*7,5-72
90 - 72
18
3. Вычислите значение выражения:
(X*(X-N))/(N-1) Для нашего примера:
(72* (72-12))/(12-1)
(72* 60)/11
4320/11
392,727272
4. Возьмите квадратный корень числа, полученного в пункте 3. В нашем примере:
392,727272 ^(1/2) = 19,81734777
5. Разделите ответ из пункта 2 на ответ из пункта 4. Это и есть счет Z. В нашем примере:
18/19,81734777 = 0,9082951063
6. Теперь преобразуйте ваш счет Z в доверительную границу. Распределение периодов является биномиальным распределением. Однако когда рассматриваются 30 или больше сделок, мы можем использовать нормальное распределение, как близкое к биномиальному. Таким образом, если вы используете 30 или более сделок, вы просто можете преобразовать ваш счет Z в доверительную границу, основываясь на уравнении (3.22) для нормального распределения.
Серийный тест подскажет вам, содержит ли ваша последовательность выигрышей и проигрышей больше или меньше полос (серий выигрышей или проигрышей), чем можно было бы ожидать от действительно случайной последовательности, в которой нет зависимости между испытаниями. Так как в нашем случае мы находимся на уровне относительно низкой доверительной границы, то можно допустить, что между сделками в этой последовательности нет зависимости.
Если счет Z имеет отрицательное значение, то при расчете доверительной границы просто возьмите его абсолютное значение. Отрицательный счет Z говорит о положительной зависимости, то есть полос меньше, чем при нормальном распределении вероятности, и следовательно, выигрыши порождают выигрыши, а проигрыши порождают проигрыши. Положительный счет Z говорит об отрицательной зависимости, то есть полос больше, чем при нормальном распределении вероятности, и следовательно, выигрыши порождают проигрыши, а проигрыши порождают выигрыши.
Какой уровень доверительной границы считать приемлемым? Статистики, как правило, рекомендуют доверительную границу не менее 90%. Некоторые рекомендуют доверительную границу свыше 99%, чтобы быть уверенными, что зависимость существует, другие рекомендуют менее строгий минимум 95,45% (2 стандартных отклонения).
Очень редко система демонстрирует доверительную границу свыше 95,45%, чаще всего она менее 90%. Даже если вы найдете систему с доверительной границей от 90 до 95,45, это не будет золотым самородком. Чтобы убедиться в зависимости, на которой можно хорошо заработать, вам нужно как минимум 95,45%. Пока зависимость находится на приемлемой доверительной границе, вы можете изменить систему, чтобы улучшить торговые решения, даже если вы не понимаете основной причины зависимости. Если вы узнаете причину, то сможете оценить, когда зависимость действовала, а когда нет, а также когда можно ожидать изменение степени зависимости. До настоящего момента мы смотрели на зависимость только с точки зрения того, была ли последняя сделка выигрышем или проигрышем. Теперь мы попытаемся определить, есть ли в последовательности выигрышей и проигрышей зависимость или нет. Серийный тест на наличие зависимости автоматически принимает в расчет процент выигрышей и проигрышей. Однако серийный тест по периодам выигрышей и проигрышей учитывает последовательность выигрышей и проигрышей, но не их размер. Для того чтобы получить истинную независимость, не только сама последовательность выигрышей и проигрышей должна быть независимой, но и размеры выигрышей и проигрышей в последовательности также должны быть независимыми. Выигрыши и проигрыши могут быть независимыми, однако их размеры могут зависеть от результатов предыдущей сделки (или наоборот). Возможным решением является проведение серийного теста только с выигрышными сделками. При этом полосы выигрышей следует разделить на длинные (по сравнению со средним значением распределения вероятности) и менее длинные. Только затем надо искать зависимость между размером выигрышных сделок, после этого необходимо провести ту же процедуру с проигрышными сделками.
Корреляция
Есть другой, и, может быть, лучший способ определения зависимости между размерами выигрышей и проигрышей. Этот метод позволяет рассмотреть размеры выигрышей и проигрышей с совершенно другой стороны, и когда он используется вместе с серийным f тестом, то взаимосвязь сделок измеряется с большей глубиной. Для количественной оценки зависимости или независимости данный метод использует коэффициент линейной корреляции г, который иногда называют пирсоновским r. Посмотрите на рисунок 1-2. На нем изображены две абсолютно коррелированные последовательности. Мы называем это положительной корреляцией.
Рисунок 1-2 Положительная корреляция (r =1,00)
Рисунок 1-3 Отрицательная корреляция (r = -1,00)
Теперь посмотрите на рисунок 1-3. Он показывает две последовательности, которые находятся точно в противофазе. Когда одна линия идет вверх, другая следует вниз (и наоборот). Мы называем это отрицательной корреляцией.
Формула для коэффициента линейной корреляции г двух последовательностей Х и Y такова (черта над переменной обозначает среднее арифметическое значение):
Расчет следует производить следующим образом:
1. Вычислите среднее Х и Y (т.е. X и Y )•
2. Для каждого периода найдите разность между Х и средним X, а также Y и средним Y.
3. Теперь рассчитайте числитель. Для этого для каждого периода перемножьте ответы из шага 2, другими словами, для каждого периода умножьте разность между Х и средним X, на разность между Y и средним Y.
4. Сложите результаты, полученные в шаге 3, за все периоды. Это и есть числитель.
5. Теперь найдите знаменатель. Для этого возьмите результаты шага 2 для каждого периода, как для разностей X, так и для разностей Y, и возведите их в квадрат (теперь они будут положительными значениями).
6. Сложите возведенные в квадрат разности Х за все периоды. Проделайте ту же операцию с возведенными в квадрат разностями Y.
7. Извлеките квадратный корень из суммы возведенных в квадрат разностей X, которые найдены в шаге 6. Теперь проделайте то же с Y, взяв квадратный корень суммы возведенных в квадрат разностей Y.
8. Умножьте два результата, которые вы нашли в шаге 7, то есть умножьте квадратный корень суммы возведенных в квадрат разностей Х на квадратный корень суммы возведенных в квадрат разностей Y. Это и есть знаменатель.
9. Разделите числитель, который вы нашли в шаге 4, на знаменатель, который вы нашли в шаге 8. Это и будет коэффициент линейной корреляции г.
Значение г всегда будет между +1,00 и -1,00. Значение 0 указывает, что корреляции нет.
Теперь посмотрите на рисунок 1-4. Он представляет следующую последовательность из 21 сделки:
Чтобы понять, есть ли какая-либо зависимость между предыдущей и текущей сделкой, мы можем использовать коэффициент линейной корреляции. Для значений Х в формуле для г возьмем P&L по каждой сделке. Для значений Y в формуле для г возьмем ту же самую последовательность P&L, только смещенную на одну сделку. Другими словами, значение Y — это предыдущее значение X. (См. рисунок 1-5.).
Рисунок 1-4 Отдельные результаты 21 сделки
Рисунок 1-5 Отдельные результаты 21 сделки, сдвинутые на 1 сделку
Средние значения различаются, потому что вы усредняете только те Х и Y, которые частично перекрывают друг друга, поэтому последнее значение Y (3) не вносит вклад в среднее Y, а первое значение Х (1) не вносит вклад в среднее X. Числитель является суммой всех значений из столбца Е (0,8). Чтобы найти знаменатель, мы извлечем квадратный корень из итогового значения столбца F, то есть 8,555699, затем извлечем квадратный корень из итогового значения столбца G, то есть 8,258329, и перемножим их, что даст в результате 70,65578. Теперь разделим числитель 0,8 на знаменатель 70,65578 и получим 0,011322. Это наш коэффициент линейной корреляции г. В данном случае коэффициент линейной корреляции 0,011322 едва ли о чем-то говорит, но для многих торговых систем он может достигать больших значений. Высокая положительная корреляция (по крайней мере, 0,25) говорит о том, что большие выигрыши редко сменяются большими проигрышами, и наоборот. Отрицательные значения коэффициента корреляции (между -0,25 и -0,30) подразумевают, что после больших проигрышей следуют большие выигрыши, и наоборот. Для заданного количества сделок с помощью метода, известного как «Трансформация Z Фишера», коэффициент корреляции можно преобразовать в доверительный уровень. Эта тема рассматривается в приложении С. Отрицательную корреляцию так же, как и положительную, можно использовать в своих интересах. Например, если обнаружена отрицательная корреляция и система показала большой проигрыш, то в следующей сделке можно ожидать большой выигрыш и таким образом открыть больше контрактов, чем обычно. Если и эта сделка принесет убыток, то он не должен быть очень большим (из-за отрицательной корреляции).
Жалоба
Напишите нам, и мы в срочном порядке примем меры.